Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Low-rank representation with graph regularization for subspace clustering

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a low-rank representation method that incorporates graph regularization for robust subspace clustering. We make the assumption that high-dimensional data can be approximated as the union of low-dimensional subspaces of unknown dimension. The proposed method extends the low-rank representation algorithm by incorporating graph regularization with a discriminative dictionary. Existing low-rank representation methods for subspace clustering use noisy data as the dictionary. The proposed technique, however, takes advantage of the discriminative dictionary to seek the lowest-rank representation by virtue of matrix recovery and completion techniques. Moreover, the discriminative dictionary is further used to construct a graph Laplacian to separate the low-rank representation of high-dimensional data. The proposed algorithm can recover the low-dimensional subspace structure from high-dimensional observations (which are often corrupted by gross errors). Simultaneously, the samples are clustered into their corresponding underlying subspaces. Extensive experimental results on benchmark databases demonstrate the efficiency and effectiveness of the proposed algorithm for subspace clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aharon M, Elad M, Bruckstein A (2006) K-svd: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322

    Article  Google Scholar 

  • Basri R, Jacobs DW (2003) Lambertian reflectance and linear subspaces. IEEE Trans Pattern Anal Mach Intell 25(2):218–233

    Article  Google Scholar 

  • Cai D, He X, Han J, Huang TS (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(8):1548–1560

    Article  Google Scholar 

  • Cai JF, Candès EJ, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4):1956–1982

    Article  MathSciNet  MATH  Google Scholar 

  • Candès EJ, Li X, Ma Y et al (2011) Robust principal component analysis? JACM 58(3):11. doi:10.1145/1970392.1970395

  • Chen J, Yang J (2014) Robust subspace segmentation via low-rank representation. IEEE Trans Cybernet 44(8):1432–1445

    Article  Google Scholar 

  • Chen J, Yi Z (2014a) Sparse representation for face recognition by discriminative low-rank matrix recovery. J Vis Commun Image Represent 25(5):763–773

    Article  Google Scholar 

  • Chen J, Yi Z (2014b) Subspace clustering by exploiting a low-rank representation with a symmetric constraint. arXiv:1403.2330

  • Cheng B, Yang J, Yan S, Fu Y, Huang TS (2010) Learning with \({l_1}\)-graph for image analysis. IEEE Trans 19(4):858–866

    MathSciNet  Google Scholar 

  • Donoho D (2006) For most large underdetermined systems of linear equations the minimal \({l_1}\)-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6):797–829

    Article  MathSciNet  MATH  Google Scholar 

  • Elhamifar E, Vidal R (2013) Sparse subspace clustering algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781

    Article  Google Scholar 

  • Fischler M, Bolles R (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  MathSciNet  Google Scholar 

  • Georghiades A, Belhumeur P, Kriegman D (2011) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  Google Scholar 

  • Hartigan JA, Wong MA (1979) Algorithm AS 136: A \(k\)-means clustering algorithm. Appl Stat 28(1):100–108. doi:10.2307/2346830

  • He R, Tan T, Wang L (2014) Robust recovery of corrupted low-rank matrix by implicit regularizers. IEEE Trans Pattern Anal Mach Intell 36(4):770–783

    Article  Google Scholar 

  • Ho J, Yang MH, Lim J et al (2003) Clustering appearances of objects under varying illumination conditions. In: 2003 IEEE computer society conference on computer vision and pattern recognition, vol 1: I-11–I-18. IEEE. doi:10.1109/CVPR.2003.1211332

  • Jolliffe I (2002) Principal component analysis. Springer, New York

    MATH  Google Scholar 

  • Kuang D, Ding H, Park H (2012) Symmetric nonnegative matrix factorization for graph clustering. In: Proceedings of the 2012 SIAM international conference on data mining, vol 12, pp 106–117

  • Lauer F, Schnorr C (2009) Spectral clustering of linear subspaces for motion segmentation. In: IEEE international conference on computer vision, pp 678–685

  • LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  • Lee K, Ho J, Kriegman D (2005a) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698

    Article  Google Scholar 

  • Lin Z, Liu R, Su Z (2012) Linearized alternating direction method with adaptive penalty for low-rank representation. arXiv:1109.0367

  • Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by low-rank representation. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 663–670. http://machinelearning.wustl.edu/mlpapers/paper_files/icml2010_LiuLY10.pdf

  • Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  • Lu X, Wang Y, Yuan Y (2013) Graph-regularized low-rank representation for destriping of hyperspectral images. IEEE Trans Pattern Anal Mach Intell 51(7):4009–4018

    Google Scholar 

  • Ma L, Wang C, Xiao B et al (2012) Sparse representation for face recognition based on discriminative low-rank dictionary learning. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 2586–2593. doi:10.1109/CVPR.2012.6247977

  • Martinez A, Benavente R (1998) The ar face database. CVC Tech report no 24

  • McWilliams B, Montana G (2014) Subspace clustering of high-dimensional data: a predictive approach. Data Min Knowl Discov 28(3):736–772

    Article  MathSciNet  MATH  Google Scholar 

  • Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst 2(11):849–856

    Google Scholar 

  • Parsons L, Haque E, Liu H (2004) Subspace clustering for high dimensional data: a review. ACM SIGKDD Explor Newslett 6(1):90–105

    Article  Google Scholar 

  • Peng X, Zhang L, Yi Z (2013) Inductive sparse subspace clustering. Letters 49:1222–1224 (2)

    Google Scholar 

  • Ramirez I, Sprechmann P, Sapiro G (2010) Classification and clustering via dictionary learning with structured incoherence and shared features. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 3501–3508. doi:10.1109/CVPR.2010.5539964

  • Rao S, Yang A, Sastry S, Ma Y (2010) Robust algebraic segmentation of mixed rigid-body and planar motions from two views. Int J Comput Vis 88(3):425–446

    Article  MathSciNet  Google Scholar 

  • Saha B, Pham DS, Phung D, Venkatesh S (2013) Sparse subspace clustering via group sparse coding. In: SDM 2013: proceedings of the thirteenth SIAM international conference on data mining, pp 130–138

  • Shi J, Malik J, Sastry S (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  • Tibshiran R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58(1):267–288

    MathSciNet  Google Scholar 

  • Vidal R, Ma Y, Sastry S (2005) Generalized principal component analysis (GPCA). IEEE Trans Pattern Anal Mach Intell 27(12):1945–1959

    Article  Google Scholar 

  • Wright J, Ganesh A, Rao S et al (2009) Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Advances in neural information processing systems, pp 2080–2088. http://papers.nips.cc/paper/3704-robust-principal-component-analysis-exact-recovery-of-corrupted-low-rank-matrices-via-convex-optimization

  • Yan J, Pollefeys M (2006) A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In: European conference on computer vision, pp 94–106

  • Yang A, Rao S, Ma Y (2006) Robust statistical estimation and segmentation of multiple subspaces. In: 2006 CVPRW’06 conference on computer vision and pattern recognition workshop, p 99

  • Yang M, Zhang L, Feng X et al (2011) Fisher discrimination dictionary learning for sparse representation. In: IEEE international conference on computer vision (ICCV), pp 543–550. doi:10.1109/ICCV.2011.6126286

  • Zhang Z, Zhao K (2013) Low-rank matrix approximation with manifold regularization. IEEE Trans Pattern Anal Mach Intell 35(7):1717–1729

    Article  Google Scholar 

  • Zhang Z, Zhang J, Xue H (2008) Improved k-means clustering algorithm. In: 2008 CISP’08 congress on image and signal processing, vol 11, pp 169–172

  • Zhao M, Jiao L, Feng J, Liu T (2014) A simplified low rank and sparse graph for semi-supervised learning. Neurocomputing 140:84–96

    Article  Google Scholar 

  • Zheng M, Bu J, Chen C, Wang C, Zhang L, Qiu G, Cai D (2011) Graph regularized sparse coding for image representation. IEEE Trans Image Process 20(5):1327–1336

    Article  MathSciNet  Google Scholar 

  • Zheng Y, Zhang X, Yang S, Jiao L (2013) Low-rank representation with local constraint for graph construction. Neurocomputing 122:398–405

    Article  Google Scholar 

  • Zhuang L, Gao H, Lin Z, Ma Y, Zhang X, Yu N (2012) Non-negative low rank and sparse graph for semi-supervised learning. In: CVPR

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions. This research was supported by Scientific Research Fund of Sichuan Provincial Education Department under Grant 13ZB0154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Chen, J.X. & Zhang, W. Low-rank representation with graph regularization for subspace clustering. Soft Comput 21, 1569–1581 (2017). https://doi.org/10.1007/s00500-015-1869-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1869-0

Keywords

Navigation