Abstract
Customer relationship management (CRM) leverages historical users’ behaviors to dawn effort of enhancing customer satisfaction and loyalty. Thus, constructing a successful customer profile plays a critical role in CRM. In this study, we are expected to predict the repurchase rates for the registered members at the specific category of e-shop. However, customers’ preferences change over time. To capture the preference drifts of the members, we propose a novel and simple time function to increase/decrease the weight of the old data in evaluating various members’ past behaviors. Then, we construct a repurchase index with time factor (RIT) model to effectively predict repurchase rates. The marketers of e-shop can thus target the members with high repurchase rates. Experimental results with a real dataset have demonstrated that this RIT model can be practically implemented and provide satisfactory results.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Albadvi A, Shahbazi M (2009) A hybrid recommendation technique based on product category attributes. Expert Syst Appl 36(9):11480–11488. doi:10.1016/j.eswa.2009.03.046
Balabanovic M, Shoham Y (1997) Fab: content-based, collaborative recommendation. Commun ACM 40(3):72. doi:10.1145/245108.245124
Blanco-Fernández Y, Pazos-Arias JJ, López-Nores M, Gil-Solla A, Ramos-Cabrer M, García-Duque J, Fernández-Vilas A, Díaz-Redondo RP (2010) Incentivized provision of metadata, semantic reasoning and time-driven filtering: making a puzzle of personalized e-commerce. Expert Syst Appl 37(1):61–69. doi:10.1016/j.eswa.2009.05.022
Cho YH, Kim JK (2004) Application of Web usage mining and product taxonomy to collaborative recommendations in e-commerce. Expert Syst Appl 26(2):233–246. doi:10.1016/S0957-4174(03)00138-6
Di Martino F, Loia V, Sessa S (2010) Fuzzy transforms method and attribute dependency in data analysis. Inf Sci 180(4):493–505. doi:10.1016/j.ins.2009.10.012
Di Martino F, Loia V, Sessa S (2011) Fuzzy transforms method in prediction data analysis. Fuzzy Sets Syst 180(1):146–163. doi:10.1016/j.fss.2010.11.009
Ding Y, Li X (2005) Time weight collaborative filtering. Paper presented at the proceedings of the 14th ACM international conference on Information and knowledge management
Duboff RS (1992) Marketing to maximize profitability. J Bus Strategy 13(6):10. doi:10.1108/eb039521
Garrido-Moreno A, Padilla-Meléndez A (2011) Analyzing the impact of knowledge management on CRM success: the mediating effects of organizational factors. Int J Inf Manage 31(5):437–444. doi:10.1016/j.ijinfomgt.2011.01.002
Gloy BA, Akridge JT, Preckel PV (1997) Customer lifetime value: an application in the rural petroleum market. Agribusiness 13(3):335–347. doi:10.1002/(sici)1520-6297(199705/06)13:3<335:aid-agr7>3.0.co;2-1
Gu L, Zhang YQ (2007) Web shopping expert using new interval type-2 fuzzy reasoning. Soft Comput 11(8):741–751. doi:10.1007/s00500-006-0117-z
Huang TC-K (2012) Mining the change of customer behavior in fuzzy time-interval sequential patterns. Appl Soft Comput 12(3):1068–1086. doi:10.1016/j.asoc.2011.11.017
Koren Y (2010) Collaborative filtering with temporal dynamics. Commun ACM 53(4):89–97. doi:10.1145/1557019.1557072
Lee J, Podlaseck M, Schonberg E, Hoch R (2001) Visualization and analysis of clickstream data of online stores for understanding web merchandising. Data Min Knowl Disc 5(1):59–84. doi:10.1023/A:1009843912662
Ma S, Li X, Ding Y, Orlowska M (2007) A recommender system with interest-drifting. In: Benatallah B, Casati F, Georgakopoulos D, Bartolini C, Sadiq W, Godart C (eds) Web information systems engineering—WISE 2007, vol 4831. Lecture Notes in Computer ScienceSpringer, Berlin, pp 633–642. doi:10.1007/978-3-540-76993-4_55
Martín-Bautista MJ, Kraft DH, Vila MA, Chen J, Cruz J (2002) User profiles and fuzzy logic for web retrieval issues. Soft Comput 6(5):365–372. doi:10.1007/s00500-002-0190-x
Min SH, Han I (2005) Detection of the customer time-variant pattern for improving recommender systems. Expert Syst Appl 28(2):189–199. doi:10.1016/j.eswa.2004.10.001
Park YJ, Chang KN (2009) Individual and group behavior-based customer profile model for personalized product recommendation. Expert Syst Appl 36(2):1932–1939. doi:10.1016/j.eswa.2007.12.034
Perfilieva I (2006) Fuzzy transforms: theory and applications. Fuzzy Sets Syst 157(8):993–1023. doi:10.1016/j.fss.2005.11.012
Piton T, Blanchard J, Briand H, Guillet F (2009) Domain driven data mining to improve promotional campaign ROI and select marketing channels. Paper presented at the proceedings of the 18th ACM conference on Information and knowledge management
Singh S, Dey L (2005) A new customized document categorization scheme using rough membership. Appl Soft Comput 5(4):373–390. doi:10.1016/j.asoc.2004.08.007
Tsai C-F, Hung C (2012) Cluster ensembles in collaborative filtering recommendation. Appl Soft Comput 12(4):1417–1425. doi:10.1016/j.asoc.2011.11.016
Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts. Mach Learn 23(1):69–101. doi:10.1007/BF00116900
Xiang L, Yang Q (2009) Time-dependent models in collaborative filtering based recommender system. Paper presented at the proceedings of the 2009 IEEE/WIC/ACM international joint conference on web intelligence and intelligent agent technology, vol 01
Yada K (2006) CODIRO: A new system for obtaining data concerning consumer behavior based on data factors of high interest determined by the analyst. Soft Comput 11(8):811–817. doi:10.1007/s00500-006-0123-1
Acknowledgments
This research was supported by National Science Council, Taiwan, under grant Nos. NSC 101-2221-E-032-050.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by V. Loia.
Rights and permissions
About this article
Cite this article
Chen, CH., Chiang, RD., Wang, YH. et al. Prediction of members’ repurchase rates with time weight function. Soft Comput 17, 1711–1723 (2013). https://doi.org/10.1007/s00500-013-0987-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-013-0987-9