Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A hardware oriented fuzzification algorithm and its VLSI implementation

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

An efficient fuzzification algorithm named as Dynamic Precision Fuzzification (DPF) is introduced in this paper which is mainly developed for hardware implementation. The DPF which might be generally used with any piecewise linear membership function, exploits an inherent capacity of the normal fuzzification algorithm to improve its efficiency when realized in a finite-precision implementation bed such as digital VLSI. The accuracy simulation results of the DPF and normal fuzzification method are presented and compared to show the superiority of the DPF. As the word-length is the most important parameter in a finite-precision implementation environment which determines the system cost-precision trade-off, the simulation results show that DPF provides suitable precision improvements with respect to traditional fuzzification without increasing the system word-length. The VLSI synthesis results of both methods are also presented to show that this considerable accuracy improvement is achieved by an acceptable increase in its VLSI implementation costs in terms of area, delay, and power consumption with respect to traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aranguren G, Nozal LAL, Basogain XJ, Martin L, Arroyabe JL (2002) Hardware implementation of a pipeline fuzzy controller and software tools. Fuzzy Sets Syst 128(1):61–79

    Article  MathSciNet  Google Scholar 

  • Banaiyan A, Mahdiani HR, Fakhraie SM (2005) Cost-performance co-analysis in VLSI implementation of existing and new defuzzification methods. Proc Int Conf Comput Intell Model Contr Automat 1:828–833

    Google Scholar 

  • Banaiyan A, Mahdiani HR, Fakhraie SM (2006) Software implementation issues of existing and new defuzzification methods. In: IEEE International conference fuzzy system, pp 1817–1822

  • Basterretxea K, Tarela JM, del Campo I (2006) Digital Gaussian membership function circuit for neuro-fuzzy hardware. IEEE Electron Lett 42:44–46

    Article  Google Scholar 

  • Basterretxea K, Tarela JM, del Campo I, Bosque G (2007) An experimental study on nonlinear function computation for neural/fuzzy hardware design. IEEE Trans Neural Netw 18(1):266–283

    Article  Google Scholar 

  • Bhattacharjee D, Basu DK, Nasipuri M, Kundu M (2010) Human face recognition using fuzzy multilayer perceptron. Soft Comput 14(6):559–570

    Article  Google Scholar 

  • Broekhoven EV, Baets BD (2006) Fast and accurate center of gravity defuzzification of fuzzy system outputs defined on trapezoidal fuzzy partitions. Fuzzy Sets Syst 157:904–918

    Article  MATH  Google Scholar 

  • Cao Q, Song L, Shi X, Li JH (2009) Multi-tasking of fuzzy inference processor through real-time context switching. IEEE/ASME AIM, pp 1429–1434

  • Chandramohan A, Rao MVC (2006) A novel approach for combining fuzzy rules using mean operators for effective rule reduction. Soft Comput 10(11):1103–1108

    Article  Google Scholar 

  • Chandramohan A, Rao MVC, Arumugam MS (2006) Two new and useful defuzzification methods based on root mean square value. Soft Comput 10(11):1047–1059

    Article  Google Scholar 

  • Cheong F, Lai R (2007) Simplifying the automatic design of a fuzzy logic controller using evolutionary programming. Soft Comput 11(9):839–846

    Article  Google Scholar 

  • Daid LJ, McGinnity TM, Maguire LP (1997) Hardware implementation of a membership function generator for fuzzy reasoning. Inf Sci 96(1):93–105

    Article  Google Scholar 

  • Del Campo I, Echanobe J, Bosque G, Tarela JM (2008) Efficient hardware/software implementation of an adaptive neuro-fuzzy system. IEEE Trans Fuzzy Syst 16(3):761–778

    Article  Google Scholar 

  • Echanobe J, del Campo I, Bosque G (2008) An adaptive neuro-fuzzy system for efficient implementations. Inf Sci 178:2150–2162

    Google Scholar 

  • Gabrielli A, Gandolfi E (1999) A fast digital fuzzy processor. IEEE Micro 19:68–79

    Article  Google Scholar 

  • Georgoulas C, Andreadis I (2010) A real-time fuzzy hardware structure for disparity map computation. Realt Image Process. doi:10.1007/s11554-010-0157-6

  • Hamze M, Mahdiani HR, Saghafi A, Fakhraie SM, Lucas C (2009) Computationally efficient active rule detection method Algorithm and architecture. Fuzzy Sets Syst 160(4):554–568

    Article  Google Scholar 

  • Konstantinidis K, Sirakoulis GC, Andreadis I (2009) Design and implementation of a fuzzy-modified ant colony hardware structure for image retrieval. IEEE Trans Syst 39:520–533

    Google Scholar 

  • Kwon J, Kim M, Oh J, Yoo JH (2010) A 22.4 mW competitive fuzzy edge detection processor for volume rendering. IEEE ISCAS, pp 1883–1886

  • Leottau L, Melgarejo M (2010) Implementing an interval type-2 fuzzy processor onto a DSC 56F8013. In: IEEE international conference fuzzy system, pp 1–4

  • Lizárraga G, Sepúlveda R, Montiel O, Castillo O (2008) Modeling and simulation of the defuzzification stage using xilinx system generator and simulink. Soft Comput Hybrid Intell Syst 154:333–343

    Article  Google Scholar 

  • Lopez SA, Melgarejo MA (2005) Hardware based fuzzy logic controllers using frequency domain singleton fuzzification. In: 14th IEEE international conference fuzzy system, pp 731–736

  • Louverdis G, Andreadis I (2003) Design and implementation of a fuzzy hardware structure for morphological color image processing. IEEE Trans Circuits Syst Video Technol 13(3):277–288

    Article  Google Scholar 

  • Mahdiani HR, Banaiyan A, Fakhraie SM (2006) Hardware implementation and comparison of new defuzzification techniques in fuzzy processors. Proc. IEEE ISCAS, pp 4619–4622

  • Mahdiani HR, Ahmadi A, Fakhraie SM, Lucas C (2010) Bio-inspired imprecise computational blocks for efficient VLSI implementation of soft-computing applications. IEEE Trans Circuits Syst 57(4):850–862

    Article  MathSciNet  Google Scholar 

  • Mahdiani HR, Banaiyan A, Haji Seyed Javadi M, Fakhraie SM, Lucas C (2012) Defuzzification block: new algorithms, and efficient hardware and software implementation issues. Elsevier J Eng Appl Artif Intell. http://dx.doi.org/10.1016/j.engappai.2012.07.001

  • Meléndez A, Castillo O, Alanis Garza A (2011) A fuzzy reactive controller of a mobile robot. Soft Comput Intell Control 318:225–232

    Google Scholar 

  • Melgarejo M, Pena-Reyes CA (2007) Implementing interval type-2 fuzzy processors. IEEE Comput Intell Mag 2(1):63–71

    Article  Google Scholar 

  • Melgarejo M, Garcia A, Pena-Reyes CA (2004) Pro-two: a hardware based platform for real time type-2 fuzzy inference. Proc IEEE Int Conf Fuzzy Syst 2:977–982

    Google Scholar 

  • Mohagheghi S, Venayagamoorthy GK, Rajagopalan S, Harley RG (2009) Hardware implementation of a mamdani based fuzzy logic controller for a static compensator in a multimachine power system. IEEE Trans Ind App 45(4):1535–1544

    Article  Google Scholar 

  • Myers DJ, Storti-Gajani G (1989) Efficient implementation of piecewise linear activation function for digital VLSI neural networks. Electron Lett 25(24):662–663

    Article  Google Scholar 

  • Oh J, Park J, Kim G, Lee S, Yoo H (2011) A 57 mW embedded mixed-mode neuro-fuzzy accelerator for intelligent multi-core processor. In: IEEE conference solid-state circuits, pp 130–132

  • Song YH, Johns AT (1998) Application of fuzzy logic in power systems, Part 2: comparison and integration with expert systems, neural networks and genetic algorithms. IEE Power Eng 12(4):185–190

    Article  Google Scholar 

  • Suetake M, da Silva IN, Goedtel A (2011) Embedded DSP-based compact fuzzy system and its application for induction-motor v/f speed control. IEEE Trans Ind Electron 58(3):750–760

    Article  Google Scholar 

  • Surmann H, Ungering AP (1995) Fuzzy rule-based systems on general purpose Processors. IEEE Micro 15:40–48

    Article  Google Scholar 

  • Tao CW, Taur JS (2005) Robust fuzzy control for a plant with fuzzy linear model. IEEE Trans Fuzzy Syst 13(1):30–41

    Article  Google Scholar 

  • Ubeyli ED (2009) Adaptive neuro-fuzzy inference systems for automatic detection of breast cancer. Med Syst 33(5):353–358

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Mahdiani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haji Seyed Javadi, M., Mahdiani, H.R. & Zeinali Kh, E. A hardware oriented fuzzification algorithm and its VLSI implementation. Soft Comput 17, 683–690 (2013). https://doi.org/10.1007/s00500-012-0940-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-012-0940-3

Keywords

Navigation