Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A comparison index for interval ordering based on generalized Hukuhara difference

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Interval methods is one option for managing uncertainty in optimization problems and in decision management. The precise numerical estimation of coefficients may be meaningless in real-world applications, because data sources are often uncertain, vague and incomplete. In this paper we introduce a comparison index for interval ordering based on the generalized Hukuhara difference; we show that the new index includes the commonly used order relations proposed in literature. The definition of a risk measure guarantees the possibility to quantify a worst-case loss when solving maximization or minimization problems with intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bellman RE, Zadeh LA (1970) Decision-making in a fuzzy environment. Manag Sci 17(4):141–164

    Article  MathSciNet  Google Scholar 

  • Chalco-Cano Y, Román-Flores H, Jiménez-Gamero MD (2011) Generalized derivative and π-derivative for set-valued functions. Inf Sci 181(11):2177–2188. doi:10.1016/j.ins.2011.01.023

    Google Scholar 

  • Dantzig GB (1963) Linear programming and extensions. Princeton University Press, Princeton

  • Dubois D (2010) Representation, propagation, and decision issues in risk analysis under incomplete probabilistic information. Risk Anal 30(3):361–368

    Article  Google Scholar 

  • Dubois D, Prade H (1980) Fuzzy sets and systems: theory and applications. Academic Press, New York

    MATH  Google Scholar 

  • Dubois, D, Prade, H (eds) (2000) Fundamentals of fuzzy sets. The handbooks of fuzzy sets series. Kluwer, Boston

    Google Scholar 

  • Guerra ML, Stefanini L (2011) A comparison index for interval ordering. IEEE SSCI 2011, symposium series on computational intelligence (FOCI 2011), pp 53–58

  • Inuiguchi M, Ramik J (2000) Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets Syst 111:3–28

    Article  MathSciNet  MATH  Google Scholar 

  • Ishibuchi H, Tanaka H (1990) Multiobjective programming in optimization of the interval objective function. Eur J Oper Res 48:219–225

    Article  MATH  Google Scholar 

  • Jiang C, Han X, Liu GR, Liu GP (2008) A nonlinear interval number programming method for uncertain optimization problems. Eur J Oper Res 188:1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Kaburlasos VG (2006) Towards a unified modelling and knowledge-representation based on lattice theory. Springer, Berlin

  • Kehagias A (2011) Some remarks on the lattice of fuzzy intervals. Inf Sci 181(10):1863–1873

    Article  MathSciNet  MATH  Google Scholar 

  • Markov S (1977) A non-standard subtraction of intervals. Serdica 3:359–370

    MathSciNet  MATH  Google Scholar 

  • Markov S (1979) Calculus for interval functions of a real variable. Computing 22:325–337

    Article  MathSciNet  MATH  Google Scholar 

  • Moore RE (1979) Methods and applications of interval analysis. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  • Moore RE, Kearfott RB, Cloud MJ (2009) Introduction to interval analysis. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  • Negoita CV, Ralescu D (1975) Applications of fuzzy sets to systems analysis. Birkhauser, Basel

    MATH  Google Scholar 

  • Oliveira C, Henggeler Antunes C (2007) Multiple objective linear programming models with interval coefficients—an illustrated overview. Eur J Oper Res 181:1434–1463

    Article  MATH  Google Scholar 

  • Papadakis SE, Kaburlasos VG (2010) Piecewise-linear approximation of nonlinear models based on probabilistically/possibilistically interpreted intervals’ Numbers (INs). Inf Sci 180(24):5060–5076

    Article  MATH  Google Scholar 

  • Plotnikova NV (2005) Systems of linear differential equations with p-derivative and linear differential inclusions. Sbornik: Math 196:1677–1691

    Article  MathSciNet  MATH  Google Scholar 

  • Ramik J (2007) Optimal solutions in optimization problem with objective function depending on fuzzy parameters. Fuzzy Sets Syst 158(11):1873–1881

    Article  MathSciNet  MATH  Google Scholar 

  • Sengupta A, Pal TK (2000) On comparing interval numbers. Eur J Oper Res 127:28–43

    Article  MathSciNet  MATH  Google Scholar 

  • Sengupta A, Pal TK (2009) Fuzzy preference ordering of interval numbers in decision problems. Springer, Berlin

    Book  MATH  Google Scholar 

  • Stefanini L (2010) A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Syst 161(11):1564–1584

    Article  MathSciNet  MATH  Google Scholar 

  • Tanaka H, Okuda T, Asai K (1974) On fuzzy mathematical programming. J Cybern 3:37–46

    MathSciNet  Google Scholar 

  • Tong S (1994) Interval number and fuzzy number linear programming. Fuzzy Sets Syst 66:301–306

    Article  Google Scholar 

  • Wang X, Kerre EE (2001a) Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy Sets Syst 118:375–385

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Kerre EE (2001b) Reasonable properties for the ordering of fuzzy quantities (II). Fuzzy Sets Syst 118:387–405

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmermann HJ (1987) Fuzzy sets, decision making and expert systems. Kluwer, Boston

    Book  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the National Project PRIN (2008JN-WWBP_004): Models and Fuzzy Calculus for Economic and Financial Decisions, financed by the Italian Ministry of University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Letizia Guerra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerra, M.L., Stefanini, L. A comparison index for interval ordering based on generalized Hukuhara difference. Soft Comput 16, 1931–1943 (2012). https://doi.org/10.1007/s00500-012-0866-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-012-0866-9

Keywords

Navigation