Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Spiking neural network and wavelets for hiding iris data in digital images

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper introduces an efficient approach to protect the ownership by hiding the iris data into a digital image for authentication purposes. The idea is to secretly embed an iris code data into the content of the image, which identifies the owner. Algorithms based on Biologically inspired Spiking Neural Networks, called Pulse Coupled Neural Network (PCNN) are first applied to increase the contrast of the human iris image and adjust the intensity with the median filter. It is followed by the PCNN segmentation algorithm to determine the boundaries of the human iris image by locating the pupillary boundary and limbus boundary of the human iris for further processing. A texture segmentation algorithm for isolating the iris from the human eye in a more accurate and efficient manner is presented. A quad tree wavelet transform is first constructed to extract the texture feature. Then, the Fuzzy c-Means (FCM) algorithm is applied to the quad tree in the coarse-to-fine manner by locating the pupillary boundary (inner) and outer (limbus) boundary for further processing. Then, iris codes (watermark) are extracted that characterizes the underlying texture of the human iris by using wavelet theory. Then, embedding and extracting watermarking methods based on Discrete Wavelet Transform (DWT) to insert and extract the generated iris code are presented. The final process deals with the authentication process. In the authentication process, Hamming distance metric that measure the variation between the recorded iris code and the corresponding extracted one from the watermarked image (Stego image) to test weather the Stego image has been modified or not is presented. Simulation results show the effectiveness and efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aslantas V (2008) A singular-value decomposition-based image watermarking using genetic algorithm. Int J Electron Commun 62: 386–394

    Article  Google Scholar 

  • Brassil JT, Low S, Maxemchuk NF (1999) Copyright protection for the electronic distribution of text. Proc IEEE 87(7): 1181–1196

    Article  Google Scholar 

  • Celik MU, Sharma G, Saber E, Tekalp AM (2006) Lossless watermarking for image authentication: a new framework and an implementation. IEEE Trans Image Process 15: 1042–1049

    Article  Google Scholar 

  • Celik MU, Sharma G, Saber E, Tekalp AM (2002) Hierarchical watermarking for secure image authentication with localization. IEEE Trans Image Process 11: 585–595

    Article  Google Scholar 

  • Chang CC, Hwang KF, Hwang MS (2002) Robust authentication scheme for protecting copyrights of images and graphics. IEE Proc Vis Image Signal Process 149: 43–50

    Article  Google Scholar 

  • Chen P-Y, Lin H-J (2006) A DWT based approach for image steganography. Int J Appl Sci Eng 4(3): 275–290

    Google Scholar 

  • Coifman R, Meyer Y, Quake S, Wickerhauser V (1990) Signal processing and compression with wave packets Numerical Algorithms Research Group. Yale University, New Haven, CT

  • Cox IJ, Miller ML (2002) The first 50 years of electronic watermarking. EURASIP JASP 2: 126–132

    Google Scholar 

  • Cox IJ, Kilian J, Leighton T, Shamoon TG (1997) Secure spread spectrum watermarking for multimedia. IEEE Trans Image Process 6(12): 1673–1687

    Article  Google Scholar 

  • Cox IJ, Miller ML, Bloom JA (2001) Digital watermarking. Morgan Kaufmann, Menlo Park

    Google Scholar 

  • Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex. Biol Cybern 60: 121–130

    Article  Google Scholar 

  • Eckhorn R, Reitboeck HJ, Arndt M (1990) Feature Linking via Synchronization among Distributed Assemblies: Simulations of Results from Cat Visual Cortex. Neural Comp 2: 293–307

    Article  Google Scholar 

  • Eckhorn R (1999) Neural mechanisms from visual cortex suggest basic circuits for linking field models. IEEE Trans Neural Netw 10: 464–479

    Article  Google Scholar 

  • El-dahshan E, Redi A, Hassanien AE, Xiao K (2007) Accurate detection of prostate boundary in ultrasound images using biologically inspired spiking neural network. In: International Symposium on Intelligent Siganl Processing and Communication Systems Proceeding, Nov. 28–Dec. 1, 2007. Xiamen, China, pp 333–336

  • Hartung F, Kutter M (1999) Multimedia watermarking techniques. Proc IEEE 87: 1079–1107

    Article  Google Scholar 

  • Hassanien AE, Jafar MA (2003) An iris recognition system to enhance E-security environment based on wavelet theory. Adv Model Optim J 5(2): 93–104

    MATH  Google Scholar 

  • Hassanien AE (2005) Watermarking algorithm for copyright protection using discrete wavelet transform. In: Proceedings of the 8th International Conference on Pattern Recognition and Information Processing (PRIP’05), May, 18–20, Minsk, Belarus

  • Hassanien AE (2006) Pulse coupled neural network for detection of masses in digital mammogram. Neural Netw World J 2/06: 129–141

    Google Scholar 

  • Hassanien AE (2007) Fuzzy-rough hybrid scheme for breast cancer detection. Image Comput Vision J 25(2): 172–183

    Article  Google Scholar 

  • Helal MA, HassanienAE Taha E-A, Nahla E-H (2004) An efficient texture segmentation algorithm for isolating Iris pattern based on wavelet theory. Int J Pattern Recognit Image Anal 14(1): 97–103

    Google Scholar 

  • Hsu C-T, Wu J-L (1999) Hidden digital watermarks in images. IEEE Trans Image Process 8(1): 58–68

    Article  Google Scholar 

  • Hubbard BB (1995) The world according to wavelets. A K Peters Wellesley, Massachusetts

    MATH  Google Scholar 

  • Jain AK, Uludag U (2003) Hiding biometric data. IEEE Trans Pattern Anal Mach Intell 25(11): 1494–1498

    Article  Google Scholar 

  • Kagan FG, Leblebici Y, Mlynek D (1998) A compact high-speed hamming distance comparator for pattern matching applications. http://turquoise.wpi.edu

  • Kerckhoffs A (1883) La Cryptographie Militaire (Military Cryptography). J Sci Militaires (J. Military Science, in French), Feb. 1883

  • Lee SJ, Jung SH (2001) A survey of watermarking techniques applied to multimedia. In: Proceedings of IEEE international symposium on industrial electronics, Pusan, Korea, pp 272–277

  • Leea C-C, Wub H-C, Tsaic C-S, Chud Y-P (2008) Adaptive lossless steganographic scheme with centralized difference expansion. Pattern Recognit 41: 2097–2106

    Article  Google Scholar 

  • Mallat SG (1989) A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell II(7): 674–693

    Article  Google Scholar 

  • McEliece R, Posner C, Rodemich R, Santosh R (1987) The capacity of the Hopfield associative memory. IEEE Trans Inform Theory 33(4): 461–482

    Article  MATH  MathSciNet  Google Scholar 

  • Meyer Y (1993) Wavelets: algorithms & applications. SIAM, Philadelphia

    MATH  Google Scholar 

  • Neil FJ, Zoran Dc, Sushil J (2000) Information hiding: steganography and watermarking—attacks and countermeasures. Kluwer, Dordrecht

    Google Scholar 

  • Nikolaidis N, Pitas I (1996) Copyright protection of images using robust digital signatures. In: Proceedings of ICASSP’96, Atlanta, Georgia, May, pp 2168–2171

  • Petitcolas FAP, Anderson RJ, Kuhn MG (1995) Information hiding: a survey. Proc IEEE, special issue on protection of multimedia content 87(7): 1062–1078

    Google Scholar 

  • Petitcolas FAP (2000) Watermarking schemes evaluation. IEEE Signal Process 17(5): 58–64

    Article  Google Scholar 

  • Podilchuk CI, Delp EJ (2001) Digital watermarking: algorithms and applications. IEEE Signal Process Mag, pp 33–46

  • Potdar VM, Han S, Chang E (2005) A survey of digital image watermarking techniques. In: Proceedings of IEEE third international conference on industrial informatics, INDIN05, pp 709–16

  • Provos N, Honeyman P (2003) Hide and seek: an introduction to steganography. IEEE Secur Priv 1(3): 32–44

    Article  Google Scholar 

  • Ross A, Jain A (2003) Information fusion in biometrics. Pattern Recognit Lett 24: 2115–2125

    Article  Google Scholar 

  • Sarukkai SR, Zhang DD (2002) Biometric solutions for authentication in an E-World. Springer, Berlin

    Google Scholar 

  • Shen J (2003) A note on wavelets and diffusions. J Comp Anal Appl 5: 147–159

    MATH  Google Scholar 

  • Wang Y, Doherty JF, Van Dyck RE (2002) A Wavelet-based watermarking algorithm for ownership verification of digital images. IEEE Trans Image Process 11(2): 77–88

    Article  Google Scholar 

  • Wolfgang RB, Delp EJ (1996) A watermark for digital images. Proc ICIP’ 96(3): 219–222

    Google Scholar 

  • Wong PW, Memon N (2001) Secret and public key image watermarking schemes for image authentication and ownership verification. IEEE Trans Image Process 10(10): 1593–1601

    Article  MATH  Google Scholar 

  • Wong PW (1998) A public key watermark for image verification and authentication. IEEE Int Conf Image Process 1: 455–459

    Google Scholar 

  • Yang M, Trifas M, Bourbakis, Cushing C (2007) A Robust Information Hiding Methodology in Wavelet Domain. Signal and Image Processing, SIP 2007. Honolulu, USA Proceeding

  • Yang C-H (2008) Inverted pattern approach to improve image quality of information hiding by LSB substitution. Pattern Recognit. http://www.sciencedirect.co. Accessed 9 Feb 2008

  • Zhang X, Wang S (2005) Steganography using multiple-base notational system and human vision sensitivity. IEEE Signal Process Lett 12: 67–70

    Article  Google Scholar 

  • Zhang F, Pan Z, Cao K, Zheng F, Wu F (2008) The upper and lower bounds of the information-hiding capacity of digital images. Inform Sci. doi:10.1016/j.ins.2008.03.011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aboul Ella Hassanien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassanien, A.E., Abraham, A. & Grosan, C. Spiking neural network and wavelets for hiding iris data in digital images. Soft Comput 13, 401–416 (2009). https://doi.org/10.1007/s00500-008-0324-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-008-0324-x

Keywords

Navigation