Abstract
For all integers \(n \ge k > d \ge 1\), let \(m_{d}(k,n)\) be the minimum integer \(D \ge 0\) such that every k-uniform n-vertex hypergraph \({\mathcal {H}}\) with minimum d-degree \(\delta _{d}({\mathcal {H}})\) at least D has an optimal matching. For every fixed integer \(k \ge 3\), we show that for \(n \in k \mathbb {N}\) and \(p = \Omega (n^{-k+1} \log n)\), if \({\mathcal {H}}\) is an n-vertex k-uniform hypergraph with \(\delta _{k-1}({\mathcal {H}}) \ge m_{k-1}(k,n)\), then a.a.s. its p-random subhypergraph \({\mathcal {H}}_p\) contains a perfect matching. Moreover, for every fixed integer \(d < k\) and \(\gamma > 0\), we show that the same conclusion holds if \({\mathcal {H}}\) is an n-vertex k-uniform hypergraph with \(\delta _d({\mathcal {H}}) \ge m_{d}(k,n) + \gamma \left( {\begin{array}{c}n - d\\ k - d\end{array}}\right) \). Both of these results strengthen Johansson, Kahn, and Vu’s seminal solution to Shamir’s problem and can be viewed as “robust” versions of hypergraph Dirac-type results. In addition, we also show that in both cases above, \({\mathcal {H}}\) has at least \(\exp ((1-1/k)n \log n - \Theta (n))\) many perfect matchings, which is best possible up to an \(\exp (\Theta (n))\) factor.
Similar content being viewed by others
Data availability
Not applicable.
References
Allen, P., Böttcher, J., Corsten, J., Davies, E., Jenssen, M., Morris, P., Roberts, B., Skokan, J.: A robust Corrádi–Hajnal Theorem. arXiv:2209.01116 (2022)
Alon, N., Frankl, P., Huang, H., Rödl, V., Ruciński, A., Sudakov, B.: Large matchings in uniform hypergraphs and the conjecture of Erdős and Samuels. J. Comb. Theory Ser. A 119, 1200–1215 (2012)
Alon, Y., Krivelevich, M.: Hitting time of edge disjoint Hamilton cycles in random subgraph processes on dense base graphs. SIAM J. Discret. Math. 36, 728–754 (2022)
Alweiss, R., Lovett, S., Wu, K., Zhang, J.: Improved bounds for the sunflower lemma. Ann. Math. 194, 795–815 (2021)
Barber, B., Glock, S., Kühn, D., Lo, A., Montgomery, R., Osthus, D.: Minimalist designs. Random Struct. Algorithms 57, 47–63 (2020)
Barber, B., Kühn, D., Lo, A., Osthus, D.: Edge-decompositions of graphs with high minimum degree. Adv. Math. 288, 337–385 (2016)
Barber, B., Kühn, D., Lo, A., Osthus, D., Taylor, A.: Clique decompositions of multipartite graphs and completion of Latin squares. J. Comb. Theory Ser. A 151, 146–201 (2017)
Chang, Y., Ge, H., Han, J., Wang, G.: Matching of given sizes in hypergraphs. SIAM J. Discret. Math. 36, 2323–2338 (2022)
Chung, F.R.K.: Regularity lemmas for hypergraphs and quasi-randomness. Random Struct. Algorithms 2, 241–252 (1991)
Condon, P., Espuny Díaz, A., Girão, A., Kühn, D., Osthus, D.: Hamiltonicity of random subgraphs of the hypercube. Mem. Am. Math. Soc. (to appear)
Cooper, C., Frieze, A., Molloy, M., Reed, B.: Perfect matchings in random \(r\)-regular, \(s\)-uniform hypergraphs. Comb. Probab. Comput. 5, 1–14 (1996)
Dirac, G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. (3) 2, 69–81 (1952)
Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)
Erdős, P., Rényi, A.: On the existence of a factor of degree one of a connected random graph. Acta Math. Acad. Sci. Hungar. 17, 359–368 (1966)
Erdős, P.: On the combinatorial problems which I would most like to see solved. Combinatorica 1, 25–42 (1981)
Erdős, P., Rado, R.: Intersection theorems for systems of sets. J. Lond. Math. Soc. 1, 85–90 (1960)
Ferber, A., Hardiman, L., Mond, A.: Counting Hamiltonian cycles in Dirac hypergraphs. arXiv:2110.15475 (2021)
Ferber, A., Krivelevich, M., Sudakov, B.: Counting and packing Hamilton \(\ell \)-cycles in dense hypergraphs. J. Comb. 7, 135–157 (2016)
Ferber, A., Kwan, M.: Dirac-type theorems in random hypergraphs. J. Comb. Theory Ser. B 155, 318–357 (2022)
Frankl, P., Rödl, V.: The uniformity lemma for hypergraphs. Graphs Comb. 8, 309–312 (1992)
Frankl, P., Kupavskii, A.: The Erdős matching conjecture and concentration inequalities. J. Comb. Theory Ser. B 157, 366–400 (2022)
Frankston, K., Kahn, J., Narayanan, B., Park, J.: Thresholds versus fractional expectation-thresholds. Ann. Math. 194, 475–495 (2021)
Frieze, A., Janson, S.: Perfect matchings in random \(s\)-uniform hypergraphs. Random Struct. Algorithms 7, 41–57 (1995)
Frieze, A., Kannan, R.: Quick approximation to matrices and applications. Combinatorica 19, 175–220 (1999)
Gao, W., Han, J.: Minimum codegree threshold for \(C_6^3\)-factors in 3-uniform hypergraphs. Comb. Probab. Comput. 26, 536–559 (2017)
Gao, W., Han, J., Zhao, Y.: Codegree conditions for tiling complete \(k\)-partite \(k\)-graphs and loose cycles. Comb. Probab. Comput. 28, 840–870 (2019)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)
Glebov, R., Luria, Z., Simkin, M.: Perfect matchings in random subgraphs of regular bipartite graphs. J. Graph Theory 97, 208–231 (2021)
Glock, S., Gould, S., Joos, F., Kühn, D., Osthus, D.: Counting Hamilton cycles in Dirac hypergraphs. Comb. Probab. Comput. 30, 631–653 (2021)
Glock, S., Kühn, D., Lo, A., Montgomery, R., Osthus, D.: On the decomposition threshold of a given graph. J. Comb. Theory Ser. B 139, 47–127 (2019)
Glock, S., Kühn, D., Lo, A., Osthus, D.: The existence of designs via iterative absorption: hypergraph \(F\)-designs for arbitrary \(F\). Mem. Am. Math. Soc. 284, v+131 (2023)
Hajnal, A., Szemerédi, E.: Proof of a Conjecture of P. Erdős, Combinatorial Theory and Its Applications, II (Proceedings in Colloqisum, Balatonfüred, North-Holland, Amsterdam, pp. 601–623 (1969)
Hàn, H., Schacht, M.: Dirac-type results for loose Hamilton cycles in uniform hypergraphs. J. Comb. Theory Ser. B 100, 332–346 (2010)
Hàn, H., Person, Y., Schacht, M.: On perfect matchings in uniform hypergraphs with large minimum vertex degree. SIAM J. Discret. Math. 23, 732–748 (2009)
Han, J.: Near perfect matchings in \(k\)-uniform hypergraphs. Comb. Probab. Comput. 24, 723–732 (2015)
Han, J.: Near perfect matchings in \(k\)-uniform hypergraphs II. SIAM J. Discret. Math. 30, 1453–1469 (2016)
Johansson, A., Kahn, J., Vu, V.: Factors in random graphs. Random Struct. Algorithms 33, 1–28 (2008)
Johansson, T.: On Hamilton cycles in Erdős-Rényi subgraphs of large graphs. Random Struct. Algorithms 57, 132–149 (2020)
Kahn, J.: Hitting times for Shamir’s problem. Trans. Am. Math. Soc. 375, 627–668 (2022)
Kahn, J.: Asymptotics for Shamir’s problem. Adv. Math. 422, 109019, 39 (2023)
Kahn, J., Kalai, G.: Thresholds and expectation thresholds. Comb. Probab. Comput. 16, 495–502 (2007)
Kang, D.Y., Kelly, T., Kühn, D., Methuku, A., Osthus, D.: Thresholds for Latin squares and Steiner triple systems: bounds within a logarithmic factor. Trans. Am. Math. Soc. 376, 6623–6662 (2023)
Karp, R.M.: Reducibility Among Combinatorial Problems. Complexity of Computer Computations, pp. 85–103. Springer, Berlin (1972)
Keevash, P., Mycroft, R.: A geometric theory for hypergraph matching. Mem. Am. Math. Soc. 233, vi+95 (2015)
Khan, I.: Perfect matchings in 3-uniform hypergraphs with large vertex degree. SIAM J. Discret. Math. 27, 1021–1039 (2013)
Khan, I.: Perfect matchings in 4-uniform hypergraphs. J. Comb. Theory Ser. B 116, 333–366 (2016)
Kim, J.H., Vu, V.H.: Concentration of multivariate polynomials and its applications. Combinatorica 20, 417–434 (2000)
Knox, F., Kühn, D., Osthus, D.: Edge-disjoint Hamilton cycles in random graphs. Random Struct. Algorithms 46, 397–445 (2015)
Komlós, J., Sárközy, G.N., Szemerédi, E.: Proof of a packing conjecture of Bollobás. Comb. Probab. Comput. 4, 241–255 (1995)
Krivelevich, M., Lee, C., Sudakov, B.: Robust Hamiltonicity of Dirac graphs. Trans. Am. Math. Soc. 366, 3095–3130 (2014)
Krivelevich, M., Lee, C., Sudakov, B.: Long paths and cycles in random subgraphs of graphs with large minimum degree. Random Struct. Algorithms 46, 320–345 (2015)
Kühn, D., Osthus, D.: Matchings in hypergraphs of large minimum degree. J. Graph Theory 51, 269–280 (2006)
Kühn, D., Osthus, D.: Embedding Large Subgraphs into Dense Graphs, Surveys in Combinatorics, London Mathematical Society, Lecture Note Series, vol. 365. Cambridge University Press, Cambridge, pp. 137–167 (2009)
Kühn, D., Osthus, D.: Hamilton decompositions of regular expanders: a proof of Kelly’s conjecture for large tournaments. Adv. Math. 237, 62–146 (2013)
Kühn, D., Osthus, D., Treglown, A.: Matchings in 3-uniform hypergraphs. J. Comb. Theory Ser. B 103, 291–305 (2013)
Kwan, M., Sah, A., Sawhney, M., Simkin, M.: High-girth Steiner triple systems. arXiv:2201.04554 (2022)
Lu, H., Yu, X., Yuan, X.: Nearly perfect matchings in uniform hypergraphs. SIAM J. Discret. Math. 35, 1022–1049 (2021)
Park, J., Pham, H.T.: A proof of the Kahn-Kalai conjecture. J. Am. Math. Soc. 37, 235–243 (2024)
Pham, H.T., Sah, A., Sawhney, M., Simkin, M.: A toolkit for robust thresholds. arXiv:2210.03064 (2022)
Pósa, L.: Hamiltonian circuits in random graphs. Discret. Math. 14, 359–364 (1976)
Rödl, V., Ruciński, A.: Dirac-Type Questions for Hypergraphs—A Survey (or More Problems for Endre to Solve), An Irregular Mind, Bolyai Society of Mathematical Studies, vol. 21. János Bolyai Mathematical Society, Budapest, pp. 561–590 (2010)
Rödl, V., Ruciński, A., Szemerédi, E.: Perfect matchings in uniform hypergraphs with large minimum degree. Eur. J. Comb. 27, 1333–1349 (2006)
Rödl, V., Ruciński, A., Szemerédi, E.: Perfect matchings in large uniform hypergraphs with large minimum collective degree. J. Comb. Theory Ser. A 116, 613–636 (2009)
Rödl, V., Ruciński, A., Schacht, M., Szemerédi, E.: A note on perfect matchings in uniform hypergraphs with large minimum collective degree. Comment. Math. Univ. Carolin. 49, 633–636 (2008)
Rödl, V., Ruciński, A., Szemerédi, E.: An approximate Dirac-type theorem for \(k\)-uniform hypergraphs. Combinatorica 28, 229–260 (2008)
Sah, A., Sawhney, M., Simkin, M.: Threshold for Steiner triple systems. Geom. Funct. Anal. 33, 1141–1172 (2023)
Schmidt, J., Shamir, E.: A threshold for perfect matchings in random \(d\)-pure hypergraphs. Discret. Math. 45, 287–295 (1983)
Steger, A.: Die Kleitman–Rothschild Methode, Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universität Bonn (1990)
Sudakov, B.: Robustness of Graph Properties, Surveys in Combinatorics, London Mathematical Society, Lecture Note Series, vol. 440. Cambridge University Press, Cambridge, pp. 372–408 (2017)
Talagrand, M.: Are many small sets explicitly small? In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 13–36 (2010)
Treglown, A., Zhao, Y.: A note on perfect matchings in uniform hypergraphs, Electron. J. Comb. 23, Paper 1.16, 14 (2016)
Zhao, Y.: Recent Advances on Dirac-Type Problems for Hypergraphs, Recent Trends in Combinatorics, IMA Volume in Mathematical Application, vol. 159. Springer, Cham., pp. 145–165 (2016)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
The authors have no conflictsof interest to declare that are relevant to the content of this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This project has received partial funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 786198, D. Kang, T. Kelly, D. Kühn, D. Osthus, and V. Pfenninger). Dong Yeap Kang was supported by Institute for Basic Science (IBS-R029-Y6).
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kang, D.Y., Kelly, T., Kühn, D. et al. Perfect Matchings in Random Sparsifications of Dirac Hypergraphs. Combinatorica 44, 1233–1266 (2024). https://doi.org/10.1007/s00493-024-00116-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00493-024-00116-0