Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Higher Convexity and Iterated Sum Sets

  • Original paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

Let f be a smooth real function with strictly monotone first k derivatives. We show that for a finite set A, with ∣A + A∣ ≤K∣A∣,

$$\left| {{2^k}f(A) - ({2^k} - 1)f(A)} \right|{ \gg _k}\,{\left| A \right|^{k + 1 - o(1)}}/{K^{{O_k}(1)}}.$$

We deduce several new sum-product type implications, e.g. that A+A being small implies unbounded growth for a many enough times iterated product set AA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bourgain and M.-C. Chang: On the size of k-fold sum and product sets of integers, J. Amer. Math. Soc. 17 (2004), 473–497.

    Article  MathSciNet  Google Scholar 

  2. A. Bush and E. Croot: Few products, many h-fold sums, International Journal of Number Theory 14 (2018), 2107–2128.

    Article  MathSciNet  Google Scholar 

  3. E. Croot and D. Hart: h-fold sums from a set with few products, SIAM J. Discrete Math. 24 (2010), 505–519.

    Article  MathSciNet  Google Scholar 

  4. G. Elekes: On the number of sums and products, Acta Arith. 81 (1997), 365–367.

    Article  MathSciNet  Google Scholar 

  5. G. Elekes, M. Nathanson and I. Ruzsa: Convexity and sumsets, J. Number Theory. 83 (1999), 194–201.

    Article  MathSciNet  Google Scholar 

  6. G. Elekes and I. Ruzsa: Few sums, many products, Studia Scientiarum Mathematicarum Hungarica 40 (2003), 301–308.

    Article  MathSciNet  Google Scholar 

  7. P. Erdős and E. Szemerédi: On sums and products of integers, Studies in pure mathematics, 213–218, Birkhäuser, Basel, 1983.

    MATH  Google Scholar 

  8. M. Garaev: On lower bounds for the L1-norm of exponential sums, Mathematical Notes 68 (2000), 713–720.

    Article  MathSciNet  Google Scholar 

  9. N. Hegyvári: On consecutive sums in sequences, Acta Math. Acad. Sci. Hungar. 48 (1986), 193–200.

    Article  MathSciNet  Google Scholar 

  10. L. Li: Multi-fold sums from a set with few products, arXiv:1106.6074.

  11. K. Olmezov: Additive properties of slowly growing convex sets (Russian), to appear-in Mat. Zametki 110 (2021), 1–18.

    Google Scholar 

  12. D. Pálvölgyi and D. Zhelezov: Query complexity and the polynomial Freiman-Ruzsa conjecture, arXiv:2003.04648.

  13. O. Roche-Newton and I. D. Shkredov: If A + A is small then AAA is superquadratic, J. Number Theory 201 (2019), 124–134.

    Article  MathSciNet  Google Scholar 

  14. O. Roche-Newton and A. Warren: New expander bounds from affine group energy, to appear in Disc. Comput. Geom.

  15. I. Z. Ruzsa, G. Shakan, J. Solymosi and E. Szemerédi: On distinct consecutive differences, arXiv:1910.02159, (2019).

  16. T. Schoen: On convolutions of convex sets and related problems, Canad. Math. Bull. 57 (2014), 877–883.

    Article  MathSciNet  Google Scholar 

  17. T. Schoen and I. Shkredov: On sumsets of convex sets, Combin. Probab. Comput. 20 (2011), 793–798.

    Article  MathSciNet  Google Scholar 

  18. I. Shkredov: On sums of Szemerédi-Trotter sets, Proc. Steklov Inst. Math. 289 (2015), 300–309.

    Article  MathSciNet  Google Scholar 

  19. I. Shkredov: Some remarks on sets with small quotient set, Mat. Sb. 208 (2017), 144–158.

    MathSciNet  MATH  Google Scholar 

  20. T. D. Wooley: Sums of three cubes, II, Acta Arith. 170 (2015), 73–100.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Brandon Hanson was supported by the NSF Award 2001622. Oliver Roche-Newton was partially supported by the Austrian Science Fund FWF Projects P 30405-N32 and P 34180. Misha Rudnev is partially supported by the Leverhulme Trust Grant RPG-2017-371. We are grateful to Antal Balog, Peter Bradshaw, Brendan Murphy and Audie Warren for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon Hanson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanson, B., Roche-Newton, O. & Rudnev, M. Higher Convexity and Iterated Sum Sets. Combinatorica 42, 71–85 (2022). https://doi.org/10.1007/s00493-021-4578-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-021-4578-6

Mathematics Subject Classification (2010)

Navigation