Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Density of 5/2-critical graphs

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

A graph G is 5/2-critical if G has no circular 5/2-coloring (or equivalently, homomorphism to C 5), but every proper subgraph of G has one. We prove that every 5/2-critical graph on n ≥ 4 vertices has at least

$$\frac{{5n - 2}}{4}$$

edges, and list all 5/2-critical graphs achieving this bound. This implies that every planar or projective-planar graph of girth at least 10 is 5/2-colorable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Borodin, S. G. Hartke, A. O. Ivanova, A. V. Kostochka and D. B. West: Circular (5,2)-coloring of sparse graphs, Sib. Elektron. Mat. Izv. 5 (2008), 417–426.

    MathSciNet  MATH  Google Scholar 

  2. O. Borodin, S.-J. Kim, A. Kostochka and D. West: Homomorphisms from sparse graphs with large girth, Journal of Combinatorial Theory, Series B 90 (2004), 147–159.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. DeVos: Open problem garden: Mapping planar graphs to odd cycles http://www.openproblemgarden.org/op/mapping_planar_graphs_to_odd_cycles.

  4. H. Grötzsch: Ein Dreifarbensatz für Dreikreisfreie Netze auf der Kugel, Math.Natur. Reihe 8 (1959), 109–120.

    MathSciNet  Google Scholar 

  5. F. Jaeger: On circular ows in graphs, in: Finite and Infinite Sets (Eger, 1981), Colloq. Math. Soc. J. Bolyai, vol. 37, 1984, 391–402.

    Article  Google Scholar 

  6. W. Klostermeyer and C. Q. Zhang: (2+ε)-coloring of planar graphs with large odd-girth, J. Graph Theory 33 (2000), 109–119.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Kostochka and M. Yancey: Ore’s conjecture for k=4 and Grötzsch Theorem, Manuscript, 2012.

    MATH  Google Scholar 

  8. O. Ore: The Four Color Problem, Academic Press, New York, 1967.

    MATH  Google Scholar 

  9. A. Vince: Star chromatic number, Journal of Graph Theory 12 (1988), 551–559.

    Article  MathSciNet  MATH  Google Scholar 

  10. X. Zhu: Circular chromatic number: a survey, Discrete Mathematics 229 (2001), 371–410.

    Article  MathSciNet  MATH  Google Scholar 

  11. X. Zhu: Circular chromatic number of planar graphs of large odd girth, Electronic J. of Combinatorics 8 (2001), R25.

    MathSciNet  MATH  Google Scholar 

  12. X. Zhu: Recent developments in circular colouring of graphs, in: Topics in discrete mathematics, Springer, 2006, 497–550.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Dvořák.

Additional information

Supported by project GA14-19503S (Graph coloring and structure) of Czech Science Foundation.

Partially supported by NSERC under Discovery Grant No. 2014-06162, the Ontario Early Researcher Awards program and the Canada Research Chairs program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvořák, Z., Postle, L. Density of 5/2-critical graphs. Combinatorica 37, 863–886 (2017). https://doi.org/10.1007/s00493-016-3356-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-016-3356-3

Mathematics Subject Classification (2000)

Navigation