Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Invariance entropy for outputs

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

For continuous time control systems, this paper analyzes output invariance entropy as a measure for the information necessary to achieve invariance of compact subsets of the output space. For linear control systems with compact control range, relations to controllability and observability properties are studied. Furthermore, the notion of asymptotic output invariance entropy is introduced and characterized for these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allgöwer F, Zheng A (eds) (2000) Nonlinear model predictive control. In: Progress in systems and control theory, vol 26. Birkhäuser Verlag, Basel

  2. Antsaklis P, Michel A (2006) Linear systems. Birkhäuser, Boston

    MATH  Google Scholar 

  3. Bowen R (1971) Entropy for group endomorphisms and homogeneous spaces. Tran Am Math Soc 153: 401–414

    Article  MATH  MathSciNet  Google Scholar 

  4. Carli R, Bullo F (2009) Quantized coordination algorithms for rendezvous and deployment. SIAM J Control Optim 48: 1251–1274

    Article  MATH  MathSciNet  Google Scholar 

  5. Colonius F (2010) Minimal data rates and invariance entropy. In: Electronic proceedings of the conference on mathematical theory of networks and systems (MTNS), Budapest July 5–9

  6. Colonius F, Kawan C (2009) Invariance entropy for control systems. SIAM J Control Optim 48: 1701–1721

    Article  MATH  MathSciNet  Google Scholar 

  7. Colonius F, Kliemann W (2000) The dynamics of control. Birkhäuser, Boston

    Google Scholar 

  8. Colonius F, Spadini M (2003) Uniqueness of local control sets. J Dyn Control Syst 9: 513–530

    Article  MATH  MathSciNet  Google Scholar 

  9. Grüne L (2009) Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite dimensional systems. SIAM J Control Optim 48: 1206–1228

    Article  MATH  MathSciNet  Google Scholar 

  10. Gupta V, Dana A, Hespanha J, Murray R, Hassibi B (2009) Data transmission over networks for estimation and control. IEEE Trans Autom Control 54: 1807–1819

    Article  MathSciNet  Google Scholar 

  11. Katok A, Hasselblatt B (1995) Introduction to the modern theory of dynamical systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  12. Kawan C (2009) Invariance entropy for control systems. Doctoral thesis, Institut für Mathematik, Universität Augsburg, 2009. http://opus.bibliothek.uni-augsburg.de/volltexte/2010/1506/

  13. Lee EB, Markus L (1967) Foundations of optimal control theory. Wiley, New York

    MATH  Google Scholar 

  14. Macki J, Strauss A (1982) Introduction to optimal control theory. Springer, Berlin

    MATH  Google Scholar 

  15. Nair G, Evans RJ, Mareels I, Moran W (2004) Topological feedback entropy and nonlinear stabilization. IEEE Trans Autom Control 49: 1585–1597

    Article  MathSciNet  Google Scholar 

  16. Robinson C (1999) Dynamical systems. stability, symbolic dynamics, and chaos, 2nd edn. CRC Press, West Palm Beach

    MATH  Google Scholar 

  17. Wong W, Brockett R (1997) Systems with finite communication bandwidth constraints.I. State estimation problems. IEEE Trans Autom Control 42: 1294–1299

    Article  MATH  MathSciNet  Google Scholar 

  18. Wong W, Brockett R (1999) Systems with finite communication bandwidth constraints II. Stabilization with limited information feedback. IEEE Trans Autom Control 44: 1049–1053

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Kawan.

Additional information

Supported by DFG Grant Co 124/17-1 within DFG Priority Program 1305.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colonius, F., Kawan, C. Invariance entropy for outputs. Math. Control Signals Syst. 22, 203–227 (2011). https://doi.org/10.1007/s00498-011-0056-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-011-0056-9

Keywords

Mathematics Subject Classification (2000)

Navigation