Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

HiDeNN-FEM: a seamless machine learning approach to nonlinear finite element analysis

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The hierarchical deep-learning neural network (HiDeNN) (Zhang et al. Computational Mechanics, 67:207–230) provides a systematic approach to constructing numerical approximations that can be incorporated into a wide variety of Partial differential equations (PDE) and/or Ordinary differential equations (ODE) solvers. This paper presents a framework of the nonlinear finite element based on HiDeNN approximation (nonlinear HiDeNN-FEM). This is enabled by three basic building blocks employing structured deep neural networks: (1) A partial derivative operator block that performs the differentiation of the shape functions with respect to the element coordinates, (2) An r-adaptivity block that improves the local and global convergence properties and (3) A materials derivative block that evaluates the material derivatives of the shape function. While these building blocks can be applied to any element, specific implementations are presented in 1D and 2D to illustrate the application of the deep learning neural network. Two-step optimization schemes are further developed to allow for the capabilities of r-adaptivity and easy integration with any existing FE solver. Numerical examples of 2D and 3D demonstrate that the proposed nonlinear HiDeNN-FEM with r-adaptivity provides much higher accuracy than regular FEM. It also significantly reduces element distortion and suppresses the hourglass mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

    MATH  Google Scholar 

  2. Zhao Z, Zheng P, Xu S et al (2019) Object detection with deep learning: a review. IEEE Trans Neural Netw Learn Syst 30(11):3212–3232

    Article  Google Scholar 

  3. Krizhevsky A, Sutskever I, Hinton G (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90

    Article  Google Scholar 

  4. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778)

  5. Sermanet P, Eigen D, Zhang X, et al (2013) OverFeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229

  6. Otter D, Medina J, Kalita J (2020) A survey of the usages of deep learning for natural language processing. IEEE Trans Neural Netw Learn Syst 32(2):604–624

    Article  MathSciNet  Google Scholar 

  7. Walczak S (2005) Artificial neural network medical decision support tool: predicting transfusion requirements of ER patients. IEEE Trans Inf Technol Biomed 9(3):468–474

    Article  Google Scholar 

  8. Tarca AL, Carey VJ, Chen XW et al (2007) Machine learning and its applications to biology. Machine learning and its applications to biology. PLoS Comput Biol 3(6):e116

    Article  Google Scholar 

  9. García-Cano E, Cosío F, Duong L et al (2018) Prediction of spinal curve progression in adolescent idiopathic scoliosis using random forest regression. Comput Biol Med 103:34–43

    Article  Google Scholar 

  10. Halabi S, Prevedello L et al (2019) The RSNA pediatric bone age machine learning challenge. Radiology 290(2):498

    Article  Google Scholar 

  11. Silver D, Huang A, Maddison C et al (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529(7587):484–489

    Article  Google Scholar 

  12. Liu Y, Zhao T, Ju W et al (2017) Materials discovery and design using machine learning. J Materiom 3(3):159–177

    Article  Google Scholar 

  13. Gomes C, Selman B et al (2019) Artificial intelligence for materials discovery. MRS Bull 44(7):538–544

    Article  Google Scholar 

  14. Weinan E, Bing Y (2018) The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun Math Statist 6(1):1–12

    Article  MathSciNet  MATH  Google Scholar 

  15. Lagaris I, Likas A, Fotiadis D (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9(5):987–1000

    Article  Google Scholar 

  16. Asady B, Hakimzadegan F, Nazarlue R (2014) Utilizing artificial neural network approach for solving two-dimensional integral equations. Math Sci 8(1):1–9

    Article  MathSciNet  MATH  Google Scholar 

  17. Piscopo M, Spannowsky M, Waite P (2019) Solving differential equations with neural networks: applications to the calculation of cosmological phase transitions. Phys Rev D 100(1):016002

    Article  MathSciNet  Google Scholar 

  18. Lee H, Kang I (1990) Neural algorithm for solving differential equations. J Comput Phys 91(1):110–131

    Article  MathSciNet  MATH  Google Scholar 

  19. Tang S, Yang Y (2021) Why neural networks apply to scientific computing? Theor Appl Mech Lett 11(3):100242

    Article  Google Scholar 

  20. Oishi A, Yagawa G (2017) Computational mechanics enhanced by deep learning. Comput Methods Appl Mech Eng 327:327–351

    Article  MathSciNet  MATH  Google Scholar 

  21. Yao H, Gao Y, Liu Y (2020) FEA-Net: a physics-guided data-driven model for efficient mechanical response prediction. Comput Methods Appl Mech Eng 363:112892

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu J, Wang J, Xiao H, Ling J (2017) A priori assessment of prediction confidence for data-driven turbulence modeling. Flow Turbul Combust 99(1):25–46

    Article  Google Scholar 

  23. Xiao H, Wu J, Wang J et al (2016) Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier-Stokes simulations: a data-driven, physics-informed Bayesian approach. J Comput Phys 324:115–136

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu D, Nocedal J (1989) On the limited memory BFGS method for large scale optimization. Math Program 45(1):503–528

    Article  MathSciNet  MATH  Google Scholar 

  25. Kingma D, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980

  26. Ruder S (2016) An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747

  27. Raissi M, Perdikaris P, Karniadakis G (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang L, Cheng L, Li H et al (2021) Hierarchical deep-learning neural networks: finite elements and beyond. Comput Mech 67(1):207–230

    Article  MathSciNet  MATH  Google Scholar 

  29. Saha S, Gan Z, Cheng L et al (2021) Hierarchical Deep Learning Neural Network (HiDeNN): an artificial intelligence (AI) framework for computational science and engineering. Comput Methods Appl Mech Eng 373:113452

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang L, Lu Y, Tang S et al (2022) HiDeNN-TD: reduced-order hierarchical deep learning neural networks. Comput Methods Appl Mech Eng 389:114414

    Article  MathSciNet  MATH  Google Scholar 

  31. Lu Y, Li H, Saha S et al (2021) Reduced order machine learning finite element methods: concept, implementation, and future applications. Comput Model Eng Sci 129(1):1351

    Google Scholar 

  32. Liu WK, Gan Z, Fleming M (2021) Mechanistic data science for STEM education and applications. Springer

    Book  Google Scholar 

  33. Belytschko T, Liu WK, Moran B, Elkhodary K (2013) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  34. Zhang R, Wen L, Xiao J, Qian D (2019) An efficient solution algorithm for space–time finite element method. Comput Mech 63(3):455–470

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang R, Naboulsi S, Eason T, Qian D (2019) A high-performance multiscale space-time approach to high cycle fatigue simulation based on hybrid CPU/GPU computing. Finite Elem Anal Des 166:103320

    Article  MathSciNet  Google Scholar 

  36. Zhang R, Wen L, Naboulsi S, Eason T, Vasudevan V, Qian D (2016) Accelerated multiscale space–time finite element simulation and application to high cycle fatigue life prediction. Comput Mech 58(2):329–349

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

DQ and YJL would like to acknowledge the support from NIH under the Grant NIH/NIBIB R01 EB025247 (through a subcontract from the UT Southwestern Medical Center). WKL, SM, and YL would like to acknowledge the support of National Science Foundation (NSF, USA) Grants CMMI-1762035 and CMMI-1934367. C. Park would like to thank the Division of Orthopedic Surgery and Sports Medicine at Ann and Robert H. Lurie Children’s Hospital for their philanthropic grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Park, C., Lu, Y. et al. HiDeNN-FEM: a seamless machine learning approach to nonlinear finite element analysis. Comput Mech 72, 173–194 (2023). https://doi.org/10.1007/s00466-023-02293-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-023-02293-z

Keywords

Navigation