Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Three embedded techniques for finite element heat flow problem with embedded discontinuities

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The present paper explores the solution of a heat conduction problem considering discontinuities embedded within the mesh and aligned at arbitrary angles with respect to the mesh edges. Three alternative approaches are proposed as solutions to the problem. The difference between these approaches compared to alternatives, such as the eXtended Finite Element Method (X-FEM), is that the current proposal attempts to preserve the global matrix graph in order to improve performance. The first two alternatives comprise an enrichment of the Finite Element (FE) space obtained through the addition of some new local degrees of freedom to allow capturing discontinuities within the element. The new degrees of freedom are statically condensed prior to assembly, so that the graph of the final system is not changed. The third approach is based on the use of modified FE-shape functions that substitute the standard ones on the cut elements. The imposition of both Neumann and Dirichlet boundary conditions is considered at the embedded interface. The results of all the proposed methods are then compared with a reference solution obtained using the standard FE on a mesh containing the actual discontinuity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46

Similar content being viewed by others

References

  1. Sven G, Arnold R (2007) An extended pressure finite element space for two-phase incompressible flows with surface tension. Academic Press, Cambridge, pp 40–58

  2. Sawada T, Tezuka A (2011) LLM and X-FEM based interface modeling of fluid thin structure interactions on a non-interface-fitted mesh. Comput Mech 48(3):319–332

    Article  MathSciNet  MATH  Google Scholar 

  3. Motasoares CA et al (2006) An enriched space-time finite element method for fluid-structure interaction—Part I: Prescribed structural displacement. III Eur Conf Comput Mech. Springer, Netherlands, pp 399–3997

    Google Scholar 

  4. Henning S, Thomas-Peter F (2011) The extended finite element method for two-phase and free-surface flows: A systematic study. Academic Press, Cambridge, pp 3369–3390

    MATH  Google Scholar 

  5. Fries T-P, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304

    MathSciNet  MATH  Google Scholar 

  6. Coppola-Owen AH, Codina R (2005) Improving Eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions. Int J Numer Methods Fluids 49(12):1287–1304

    Article  MathSciNet  MATH  Google Scholar 

  7. Chessa J, Belytschko T (2003) An extended finite element method for two-phase fluid. J Appl Mech 70:10–17

    Article  MathSciNet  MATH  Google Scholar 

  8. Belytschko T et al (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50:993–1013

    Article  MATH  Google Scholar 

  9. Zienkiewicz OC, Taylor RL (2000) The finite element method-the basis. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  10. Chessa J, Smolinski P, Belytschko T (2002) The extended finite element method (XFEM) for solidification problems. Int J Numer Methods Eng 53:1959–1977

    Article  MathSciNet  MATH  Google Scholar 

  11. Ausas RF, Sousa FS, Buscaglia GC (2010) An improved finite element space for discontinuous pressures. Comput Methods Appl Mech Eng 199:1019–1031

    Article  MathSciNet  MATH  Google Scholar 

  12. Sebastian K, Kurt M (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46(3):311–326

    Article  MathSciNet  MATH  Google Scholar 

  13. Rivera CA et al (2010) Parallel finite element simulations of incompressible viscous fluid flow by domain decomposition with Lagrange multipliers. J Comput Phys 229(13):5123–5143

    Article  MathSciNet  MATH  Google Scholar 

  14. Belytschko T, Lu Y, Gu L (1994) Element free galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Article  MathSciNet  MATH  Google Scholar 

  15. Belgacem FB (1999) The mortar finite element method with lagrange multipliers. Numer Math 84(2):173–197

  16. Zhu T, Atluri SN (1998) A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput Mech 21(3):211–222

    Article  MathSciNet  MATH  Google Scholar 

  17. Hansbo A, Hansbo P (2002) An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput Method Appl Mech Eng 191:5537–5552

    Article  MathSciNet  MATH  Google Scholar 

  18. Griebel M, Schweitzer MA (2002) A particle-partition of unity method. Part V: boundary conditions. In: Hildebrandt S, Karcher H (eds) Geometric analysis and nonlinear partial differential equations. Springer, Berlin, pp 517–540

    Google Scholar 

  19. Babuska I, Banerjee U, Osborn JE (2001) Meshless and generalized finite element methods: A survey of some major results. Lecture Notes in Computational Science and Engineering. In: Griebel M, Schweitzer MA (eds) Meshfree methods for partial differential equations, vol 26. Springer, Berlin, pp 1–20

    Chapter  Google Scholar 

  20. Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193:3523–3540

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of the ERC through the uLites (FP7-314891), NUMEXA (FP7-611636) and REALTIME (FP7-246643) projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Davari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davari, M., Rossi, R. & Dadvand, P. Three embedded techniques for finite element heat flow problem with embedded discontinuities. Comput Mech 59, 1003–1030 (2017). https://doi.org/10.1007/s00466-017-1382-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1382-7

Keywords

Navigation