Abstract
A permutation \(\pi \) is a merge of a permutation \(\sigma \) and a permutation \(\tau \), if we can color the elements of \(\pi \) red and blue so that the red elements have the same relative order as \(\sigma \) and the blue ones as \(\tau \). We consider, for fixed hereditary permutation classes \(\mathcal {C}\) and \(\mathcal {D}\), the complexity of determining whether a given permutation \(\pi \) is a merge of an element of \(\mathcal {C}\) with an element of \(\mathcal {D}\). We develop general algorithmic approaches for identifying polynomially tractable cases of merge recognition. Our tools include a version of streaming recognizability of permutations via polynomially constructible nondeterministic automata, as well as a concept of bounded width decomposition, inspired by the work of Ahal and Rabinovich. As a consequence of the general results, we can provide nontrivial examples of tractable permutation merges involving commonly studied permutation classes, such as the class of layered permutations, the class of separable permutations, or the class of permutations avoiding a decreasing sequence of a given length. On the negative side, we obtain a general hardness result which implies, for example, that it is NP-complete to recognize the permutations that can be merged from two subpermutations avoiding the pattern 2413.
Similar content being viewed by others
Data Availibility
There are no datasets associated with this work.
References
Knuth, D.E.: The Art of Computer Programming, Volume III: Sorting and Searching. Addison-Wesley Series in Computer Science and Information Processing, pp. 722–1. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. (1973)
Brandstädt, A., Kratsch, D.: On partitions of permutations into increasing and decreasing subsequences. Elektron Informationsverarb Kybernet 22(5–6), 263–273 (1986)
Stankova, Z.E.: Forbidden subsequences. Discrete Math. 132(1–3), 291–316 (1994). https://doi.org/10.1016/0012-365X(94)90242-9
Kézdy, A.E., Snevily, H.S., Wang, C.: Partitioning permutations into increasing and decreasing subsequences. J. Comb. Theory Ser. A 73(2), 353–359 (1996). https://doi.org/10.1016/S0097-3165(96)80012-4
Atkinson, M.D.: Permutations which are the union of an increasing and a decreasing subsequence. Electron. J. Comb. 5, 6–13 (1998) https://doi.org/10.37236/1344
Murphy, M.M.: Restricted Permutations, Antichains, Atomic Classes and Stack SD thesis, University of St Andrews (2003)
Albert, M.H.: On the length of the longest subsequence avoiding an arbitrary pattern in a random permutation. Random Struct. Algorithms 31(2), 227–238 (2007). https://doi.org/10.1002/rsa.20140
Albert, M., Pantone, J., Vatter, V.: On the growth of merges and staircases of permutation classes. Rocky Mt. J. Math. 49(2), 355–367 (2019). https://doi.org/10.1216/RMJ-2019-49-2-355
Claesson, A., Jelínek, V., Steingrímsson, E.: Upper bounds for the Stanley–Wilf limit of 1324 and other layered patterns. J. Comb. Theory Ser. A 119(8), 1680–1691 (2012). https://doi.org/10.1016/j.jcta.2012.05.006
Bóna, M.: A new upper bound for 1324-avoiding permutations. Comb. Probab. Comput. 23(5), 717–724 (2014). https://doi.org/10.1017/S0963548314000091
Bóna, M.: A new record for 1324-avoiding permutations. Eur. J. Math. 1(1), 198–206 (2015). https://doi.org/10.1007/s40879-014-0020-6
Bevan, D., Brignall, R., Elvey Price, A., Pantone, J.: A structural characterisation of \({\rm Av}(1324)\) and new bounds on its growth rate. Eur. J. Combin. 88, 103–115 (2020). https://doi.org/10.1016/j.ejc.2020.103115
Jelínek, V., Valtr, P.: Splittings and Ramsey properties of permutation classes. Adv. Appl. Math. 63, 41–67 (2015). https://doi.org/10.1016/j.aam.2014.10.003
Jelínek, V., Opler, M.: Splittability and 1-amalgamability of permutation classes. Discrete Math. Theor. Comput. Sci. 19(2), 4–14 (2017). https://doi.org/10.1109/mcse.2017.25
Albert, M., Jelínek, V.: Unsplittable classes of separable permutations. Electron. J. Comb. 23(2), 2–4920 (2016) https://doi.org/10.37236/6115
Vatter, V.: An Erdős–Hajnal analogue for permutation classes. Discrete Math. Theor. Comput. Sci. 18(2), 4–5 (2016) https://doi.org/10.46298/dmtcs.1328
Bose, P., Buss, J.F., Lubiw, A.: Pattern matching for permutations. Inf. Process. Lett. 65(5), 277–283 (1998). https://doi.org/10.1016/S0020-0190(97)00209-3
Ahal, S., Rabinovich, Y.: On complexity of the subpattern problem. SIAM J. Discrete Math. 22(2), 629–649 (2008). https://doi.org/10.1137/S0895480104444776
Guillemot, S., Marx, D.: Finding small patterns in permutations in linear time. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 82–101. ACM, New York (2014). https://doi.org/10.1137/1.9781611973402.7
Rutenburg, V.: Complexity of generalized graph coloring. In: Mathematical Foundations of Computer Science, 1986 (Bratislava, 1986). Lecture Notes in Computer Science, vol. 233, pp. 573–581. Springer, Berlin (1986). https://doi.org/10.1007/BFb0016284
Farrugia, A.: Vertex-partitioning into fixed additive induced-hereditary properties is NP-hard. Electron. J. Combin. 11(1), 46–9 (2004) https://doi.org/10.37236/1799
Brown, J.I.: The complexity of generalized graph colorings. Discrete Appl. Math. 69(3), 257–270 (1996). https://doi.org/10.1016/0166-218X(96)00096-0
Alekseev, V.E., Farrugia, A., Lozin, V.V.: New results on generalized graph coloring. Discrete Math. Theor. Comput. Sci. 6(2), 215–221 (2004) https://doi.org/10.46298/dmtcs.311
Achlioptas, D., Brown, J.I., Corneil, D.G., Molloy, M.S.O.: The existence of uniquely \(-G\) colourable graphs. Discrete Math. 179(1–3), 1–11 (1998). https://doi.org/10.1016/S0012-365X(97)00022-8
Borowiecki, P.: Computational aspects of greedy partitioning of graphs. J. Comb. Optim. 35(2), 641–665 (2018). https://doi.org/10.1007/s10878-017-0185-2
Ekim, T., Heggernes, P., Meister, D.: Polar permutation graphs are polynomial-time recognisable. Eur. J. Comb. 34(3), 576–592 (2013). https://doi.org/10.1016/j.ejc.2011.12.007
Vatter, V.: Permutation classes. In: Handbook of Enumerative Combinatorics. Discrete Mathematics Applications (Boca Raton), pp. 753–833. CRC Press, Boca Raton, FL (2015)
Vatter, V.: Growth rates of permutation classes: from countable to uncountable. Proc. Lond. Math. Soc. 119(4), 960–997 (2019). https://doi.org/10.1112/plms.12250
Berendsohn, B.A.: Complexity of Permutation Pattern Matching. Master’s thesis, Freie Universität Berlin (2019)
Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)
Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2007). Available on: http://tata.gforge.inria.fr/
Jelínek, V., Opler, M., Pekárek, J.: Long paths make pattern-counting hard, and deep trees make it harder. In: 16th International Symposium on Parameterized and Exact Computation. LIPIcs Leibniz International Proceedings of the Informatics, vol. 214, pp. 22–17. Schloss Dagstuhl Leibniz-Zent Informatics, Wadern (2021). https://doi.org/10.4230/LIPIcs.IPEC.2021.22
Jelínek, V., Kynčl, J.: Hardness of permutation pattern matching. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 378–396. SIAM, Philadelphia, PA (2017). https://doi.org/10.1137/1.9781611974782.24
Jelínek, V., Opler, M., Pekárek, J.: A complexity dichotomy for permutation pattern matching on grid classes. In: 45th International Symposium on Mathematical Foundations of Computer Science. LIPIcs Leibniz International Proceedings of the Informatics, vol. 170, pp. 52–18. Schloss Dagstuhl Leibniz-Zent Informatics, Wadern (2020). https://doi.org/10.4230/LIPIcs.MFCS.2020.52
Albert, M., Brignall, R., Ruškuc, N., Vatter, V.: Rationality for subclasses of 321-avoiding permutations. Eur. J. Comb. 78, 44–72 (2019). https://doi.org/10.1016/j.ejc.2019.01.001
Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: A \(c^kn\) 5-approximation algorithm for treewidth. SIAM J. Comput. 45(2), 317–378 (2016). https://doi.org/10.1137/130947374
Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-5401(90)90043-H
Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)
Schaefer, T.J.: The complexity of satisfiability problems. In: Conference Record of the Tenth Annual ACM Symposium on Theory of Computing (San Diego, California, 1978), pp. 216–226. ACM, New York (1978)
Hoàng, C.T., Le, V.B.: \(P_4\)-free colorings and \(P_4\)-bipartite graphs. Discrete Math. Theor. Comput. Sci. 4(2), 109–122 (2001) https://doi.org/10.46298/dmtcs.272
Jelínek, V., Opler, M., Valtr, P.: Generalized coloring of permutations. In: 26th European Symposium on Algorithms. LIPIcs. Leibniz International Proceedings of the Informatics, vol. 112, pp. 50–14. Schloss Dagstuhl Leibniz-Zent Informatics, Wadern (2018). https://doi.org/10.4230/LIPIcs.ESA.2018.50
Funding
This research was supported by project GA21-32817 S of the Czech Science Foundation. An extended abstract of this paper has appeared in the proceedings of ESA 2018 [41]. The extended abstract omitted all the proofs of the main results, as well as all the material related to BD-recognizability. It also omitted the notion of PNA-recognizability and used a formally different notion of NLOL-recognizability instead.
Author information
Authors and Affiliations
Contributions
The three coauthors contributed equally to this work.
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jelínek, V., Opler, M. & Valtr, P. Generalized Coloring of Permutations. Algorithmica 86, 2174–2210 (2024). https://doi.org/10.1007/s00453-024-01220-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-024-01220-9