Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Parameterized Multi-Scenario Single-Machine Scheduling Problems

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study a class of multi-scenario single-machine scheduling problems. In this class of problems, we are given a set of scenarios with each one having a different realization of job characteristics. We consider these multi-scenario problems where the scheduling criterion can be any one of the following three: The total weighted completion time, the weighted number of tardy jobs, and the weighted number of jobs completed exactly at their due-date. As all the resulting problems are NP-hard, our analysis focuses on whether any one of the problems becomes tractable when some specific natural parameters are of limited size. The analysis includes the following parameters: The number of jobs with scenario-dependent processing times, the number of jobs with scenario-dependent weights, and the number of different due-dates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aissi, H., Aloulou, M., Kovalyov, M.: Minimizing the number of late jobs on a single machine under due date uncertainty. J. Sched. 14, 351–360 (2011)

    Article  MathSciNet  Google Scholar 

  2. Aloulou, A., Della Croce, F.: Complexity of single machine scheduling problems under scenario-based uncertainty. Oper. Res. Lett. 36, 338–342 (2008)

    Article  MathSciNet  Google Scholar 

  3. Brucker, P., Kravchenko, S.: Scheduling equal processing time jobs to minimize the weighted number of late jobs. J. Math. Model. Algorithms 5(2), 143–165 (2006)

    Article  MathSciNet  Google Scholar 

  4. Chudak, D., Hochbaum, A.: A half-integral linear programming relaxation for scheduling precedence-constrained jobs on a single machine. Oper. Res. Lett. 25, 199–204 (1999)

    Article  MathSciNet  Google Scholar 

  5. Cygan, M., Fomin, F., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.: Parameterized Algorithms. Springer, Berlin (2015)

    Book  Google Scholar 

  6. Daniels, R., Kouvelis, M.: Robust scheduling to hedge against processing time uncertainty in single-stage production. Manag. Sci. 41(2), 363–376 (1995)

    Article  Google Scholar 

  7. de Farias, I.R., Zhao, H., Zhao, M.: A family of inequalities valid for the robust single machine scheduling polyhedron. Comput. Oper. Res. 37(9), 1610–1614 (2010)

    Article  MathSciNet  Google Scholar 

  8. Downey, R., Fellows, M.: Fixed-parameter intractability. In: Proceedings of the 7th Annual Structure in Complexity Theory Conference (COCO ’92), pp. 36–49 (1992)

  9. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Berlin (1999)

    Book  Google Scholar 

  10. Emmons, H., Pinedo, M.: Scheduling stochastic jobs with due dates on parallel machines. Eur. J. Oper. Res. 47, 49–55 (1990)

    Article  MathSciNet  Google Scholar 

  11. Flum, J., Grohe, M.: Parameterized Complexity Theory. An EATCS Series: Texts in Theoretical Computer Science. Springer, Berlin (1998)

    Google Scholar 

  12. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

    Article  MathSciNet  Google Scholar 

  13. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  14. Gilenson, M., Shabtay, D.: Multi-scenario scheduling to maximize the weighted number of just-in-time jobs. J. Oper. Res. Soc. (2019). https://doi.org/10.1080/01605682.2019.1578628

    Article  Google Scholar 

  15. Gilenson, M., Naseraldin, H., Yedidsion, L.: An approximation scheme for the bi-scenario sum of completion times trade-off problem. J. Sched. 22, 289–304 (2019)

    Article  MathSciNet  Google Scholar 

  16. Glazebrook, K.: Scheduling tasks with exponential service times on parallel processors. J. Appl. Probab. 16, 685–689 (1979)

    Article  MathSciNet  Google Scholar 

  17. Kampke, T.: Optimal scheduling of jobs with exponential service times on identical parallel machines. Oper. Res. 37, 126–133 (1989)

    Article  MathSciNet  Google Scholar 

  18. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)

    Article  MathSciNet  Google Scholar 

  19. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J., Bohlinger, D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Berlin (1972)

    Chapter  Google Scholar 

  20. Kasperski, A., Zieliński, P.: Minmax (regret) scheduling problems. In: Sotskov, Y., Werner, F. (eds.) Sequencing and Scheduling with Inaccurate Data, pp. 159–210. Nova Science Publishers, Inc., Hauppauge, NY (2014)

  21. Kasperski, A., Zieliński, P.: Robust single machine scheduling problem with weighted number of late jobs criterion. In: Operations Research Proceedings, pp. 279–284. Springer, New York (2014)

  22. Kasperski, A., Zieliński, P.: Single machine scheduling problems with uncertain parameters and the owa criterion. J. Sched. 19(2), 177–190 (2016)

    Article  MathSciNet  Google Scholar 

  23. Kouvelis, R., Daniels, M., Vairaktarakis, G.: Robust scheduling of a two-machine flow shop with uncertain processing times. IIE Trans. 32(5), 421–432 (2000)

    Google Scholar 

  24. Lann, A., Mosheiov, G.: Single machine scheduling to minimize the number of early and tardy jobs. Comput. OR 23(8), 769–781 (1996)

    Article  Google Scholar 

  25. Lawler, E., Moore, J.: A functional equation and its application to resource allocation and sequencing problems. Manag. Sci. 16(1), 77–84 (1969)

    Article  Google Scholar 

  26. Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)

    Article  MathSciNet  Google Scholar 

  27. Lu, K.L.S., Lin, C.C., Ying, S.W., Ying, K.: Robust scheduling on a single machine to minimize total flow time. Comput. Oper. Res. 39(7), 1682–1691 (2012)

    Article  MathSciNet  Google Scholar 

  28. Mastrolilli, M., Mutsanas, N., Svensson, O.: Single machine scheduling with scenarios. Theor. Comput. Sci. 477(7), 57–66 (2013)

    Article  MathSciNet  Google Scholar 

  29. Moore, J.: An \(n\) job, one machine sequencing algorithm for minimizing the number of late jobs. Manag. Sci. 15(1), 102–109 (1968)

    Article  Google Scholar 

  30. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications. Oxford Univerity Press, Oxford (2006)

    Book  Google Scholar 

  31. Peha, J.: Heterogeneous-criteria scheduling: minimizing weighted number of tardy jobs and weighted completion time. Comput. Oper. Res. 22(10), 1089–1100 (1995)

    Article  Google Scholar 

  32. Sahni, S.: Algorithms for scheduling independent tasks. J. ACM 23(1), 116–127 (1976)

    Article  MathSciNet  Google Scholar 

  33. Skutella, M., Sviridenko, M., Uetz, M.: Unrelated machine scheduling with stochastic processing times. Math. Oper. Res. 41, 851–864 (2016)

    Article  MathSciNet  Google Scholar 

  34. Smith, W.: Various optimizers for single-stage production. Naval Res. Logist. 3, 59–66 (1956)

    Article  MathSciNet  Google Scholar 

  35. Weiss, G., Pinedo, M.: Scheduling tasks with exponential service times on non identical processors to minimize various cost functions. J. Appl. Probab. 17, 187–202 (1980)

    Article  MathSciNet  Google Scholar 

  36. Xu, X., Chi, W., Lin, J., Qian, Y.: Robust makespan minimisation in identical parallel machine scheduling problem with interval data. Int. J. Prod. Res. 51(12), 3532–3548 (2013)

    Article  Google Scholar 

  37. Yang, J., Yu, G.: On the robust single machine scheduling problem. J. Comb. Optim. 6(1), 17–33 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by Grant No. 2016049 from the United States-Israel Binational Science Foundation (BSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dvir Shabtay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermelin, D., Manoussakis, G., Pinedo, M. et al. Parameterized Multi-Scenario Single-Machine Scheduling Problems. Algorithmica 82, 2644–2667 (2020). https://doi.org/10.1007/s00453-020-00702-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-020-00702-w

Keywords

Navigation