Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the Exact Complexity of Evaluating Quantified k -CNF

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We relate the exponential complexities 2s(k)n of \(\textsc {$k$-sat}\) and the exponential complexity \(2^{s(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf}))n}\) of \(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})\) (the problem of evaluating quantified formulas of the form \(\forall\vec{x} \exists\vec{y} \textsc {F}(\vec {x},\vec{y})\) where F is a 3-cnf in \(\vec{x}\) variables and \(\vec{y}\) variables) and show that s(∞) (the limit of s(k) as k→∞) is at most \(s(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf}))\). Therefore, if we assume the Strong Exponential-Time Hypothesis, then there is no algorithm for \(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})\) running in time 2cn with c<1. On the other hand, a nontrivial exponential-time algorithm for \(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})\) would provide a \(\textsc {$k$-sat}\) solver with better exponent than all current algorithms for sufficiently large k. We also show several syntactic restrictions of the evaluation problem \(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})\) have nontrivial algorithms, and provide strong evidence that the hardest cases of \(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})\) must have a mixture of clauses of two types: one universally quantified literal and two existentially quantified literals, or only existentially quantified literals. Moreover, the hardest cases must have at least no(n) universally quantified variables, and hence only o(n) existentially quantified variables. Our proofs involve the construction of efficient minimally unsatisfiable \(\textsc {$k$-cnf}\)s and the application of the Sparsification lemma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean formulas. Inf. Comput. 117(1), 12–18 (1995)

    Article  MATH  Google Scholar 

  3. Chen, H.: Existentially restricted quantified constraint satisfaction. Inf. Comput. 207(3), 369–388 (2009)

    Article  MATH  Google Scholar 

  4. Calabro, C., Impagliazzo, R., Kabanets, V., Paturi, R.: The complexity of unique k-sat: an isolation lemma for k-cnfs. In: Proceedings of the Eighteenth IEEE Conference on Computational Complexity, 386–393 May 2008. Journal of Computer and Systems Sciences, vol. 74, pp. 135–144 (2003). Preliminary version

    Google Scholar 

  5. Calabro, C., Impagliazzo, R., Paturi, R.: A duality between clause width and clause density for sat. In: CCC ’06: Proceedings of the 21st Annual IEEE Conference on Computational Complexity, pp. 252–260. IEEE Computer Society, Washington (2006)

    Google Scholar 

  6. Calabro, C., Impagliazzo, R., Paturi, R.: The complexity of satisfiability of small depth circuits. In: Parameterized and Exact Computation, 4th International Workshop, IWPEC 2009, Copenhagen, Denmark, September 10–11, 2009. Revised Selected Papers, pp. 75–85. Springer, Berlin (2009)

    Chapter  Google Scholar 

  7. Dantsin, E., Wolpert, A.: An improved upper bound for sat. In: Bacchus, F. (ed.) Lecture Notes in Computer Science, vol. 3569, pp. 400–407. Springer, Berlin (2005)

    Google Scholar 

  8. Timon, H.: 3-sat faster and simpler - unique-sat bounds for PPSZ hold in general. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science, pp. 277–284 (2011)

    Google Scholar 

  9. Impagliazzo, R., Paturi, R.: The complexity of k-sat. In: IEEE Conference on Computational Complexity, vol. 14, pp. 237–240 (1999)

    Google Scholar 

  10. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexit? J. Comput. Syst. Sci. 63, 512–530 (1998). Preliminary version In: 39th Annual IEEE Symposium on Foundations of Computer Science, pp. 653–662 (1998)

    Article  MathSciNet  Google Scholar 

  11. Iwama, K., Seto, K., Takai, T., Tamaki, S.: Improved randomized algorithms for 3-sat. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) Algorithms and Computation. Lecture Notes in Computer Science, vol. 6506, pp. 73–84. Springer, Berlin (2010)

    Chapter  Google Scholar 

  12. Lee, C.: On the size of minimal unsatisfiable formulas. ArXiv E-prints (2008)

  13. Paturi, R., Pudlák, P., Saks, M.E., Zane, F.: An improved exponential-time algorithm for k-sat. J. ACM 52(3), 337–364 (2005). Preliminary version In: 39th Annual IEEE Symposium on Foundations of Computer Science, pp. 628–637 (1998)

    MathSciNet  Google Scholar 

  14. Paturi, R., Pudlák, P., Zane, F.: Satisfiability coding lemma. In: Preliminary version in 38th Annual Symposium on Foundations of Computer Science, vol. 566 (1999). 1997

    Google Scholar 

  15. Daniel, R.: Improved bound for the PPSZ/Schöning-algorithm for 3-sat. J. Satisf. Boolean Model. Comput. 1(2), 111–122 (2006)

    MATH  Google Scholar 

  16. Schöning, U.: A probabilistic algorithm for k-sat based on limited local search and restart. Algorithmica 32(4), 615–623 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schuler, R.: An algorithm for the satisfiability problem of formulas in conjunctive normal form. J. Algorithms 54(1), 40–44 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Williams, R.: Algorithms for quantified boolean formulas. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 299–307 (2002)

    Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their helpful comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramamohan Paturi.

Additional information

R. Impagliazzo research was supported by the Simonyi Fund, the Bell Company Fellowship and the Fund for Math, and NSF grants DMS-083573, CNS-0716790 and CCF-0832797.

R. Paturi research was supported by NSF grant CCF-0947262 from the Division of Computing and Communication Foundations. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calabro, C., Impagliazzo, R. & Paturi, R. On the Exact Complexity of Evaluating Quantified k -CNF . Algorithmica 65, 817–827 (2013). https://doi.org/10.1007/s00453-012-9648-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-012-9648-0

Keywords

Navigation