Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Model-based segmentation of pediatric and adult joints for orthopedic measurements in digital radiographs of the lower limbs

  • Special Issue Paper
  • Published:
Computer Science - Research and Development

Abstract

The growth of human bones forms a major problem when automatically segmenting orthopedic radiographs. Any template-based segmentation methods fails to fully capture these non-linear developments. However to extract orthopedic measurements or the bone age for patients of arbitrary age it is mandatory to have a segmentation scheme that deals with growth related changes. In this paper we propose a robust method based on Active Shape Models (ASMs) that on the one hand is invariant against the patient’s age and on the other hand generalizes well over the large inter-patient variability. Our method achieves an accuracy of 0.48 mm for adult patients and 0.64 mm for children on a large test set of 180 images, with the patient’s age covering a high range from less than one month to 93 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adelson E, Anderson CH, Bergen JR, Burt PJ, Ogden JM (1984) Pyramid methods in image processing. RCA Eng 29(6):33–41

    Google Scholar 

  2. Behiels G, Maes F, Vandermeulen D, Suetens P (2002) Evaluation of image features and search strategies for segmentation of bone structures in radiographs using active shape models. Med Image Anal 6(1):47–62

    Article  Google Scholar 

  3. Boewer M, Arndt H, Ostermann PW, Petersein J, Mutze S (2005) Length and angle measurements of the lower extremity in digital composite overview images. Eur Radiol 15(1):158–164

    Article  Google Scholar 

  4. Bosch J, Mitchell S, Lelieveldt B, Nijland F, Kamp O, Sonka M, Reiber J (2002) Automatic segmentation of echocardiographic sequences by active appearance motion models. IEEE Trans Med Imaging 21(11):1374–1383

    Article  Google Scholar 

  5. Boukala N, Favier E, Laget B, Radeva P (2004) Active shape model based segmentation of bone structures in hip radiographs. In: IEEE international conference on industrial technology, pp 1682–1687

    Google Scholar 

  6. Chen Y, Ee X, Leow WK, Howe TS (2005) Automatic extraction of femur contours from hip X-ray images. In: Computer vision for biomedical image applications. Springer, Berlin, pp 200–209

    Chapter  Google Scholar 

  7. Cootes TF, Taylor CJ (1992) Active shape models—‘smart snakes’. In: British machine vision conference. Springer, Berlin, pp 266–275

    Google Scholar 

  8. Cootes TF, Taylor CJ (2001) Statistical models of appearance for medical image analysis and computer vision. In: Medical imaging, San Jose. SPIE, Bellingham, pp 236–248

    Google Scholar 

  9. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models—their training and application. Comput Vis Image Underst 61(1):38–59

    Article  Google Scholar 

  10. Cootes TF, Edwards G, Taylor CJ (1999) Comparing active shape models with active appearance models. In: British machine vision conference. BMVA Press, Birmingham, pp 173–182

    Google Scholar 

  11. Cootes TF, Baldock ER, Graham J (2000) An introduction to active shape models. Oxford University Press, London, pp 223–248

    Google Scholar 

  12. Cootes TF, Wheeler GV, Walker KN, Taylor CJ (2002) View-based active appearance models. Image Vis Comput 20(9–10):657–664

    Article  Google Scholar 

  13. Ding F, Leow WK, Howe TS (2007) Automatic segmentation of femur bones in anterior-posterior pelvis X-ray images. In: Computer analysis of images and patterns. Springer, Berlin, pp 205–212

    Chapter  Google Scholar 

  14. Dong X, Zheng G (2008) Automatic extraction of femur contours from calibrated X-ray images: a Bayesian inference approach. In: 5th IEEE international symposium on biomedical imaging. Springer, Berlin, pp 57–60

    Google Scholar 

  15. van Ginneken B, Frangi AF, Staal JJ, ter Haar Romeny BM, Viergever MA (2002) Active shape model segmentation with optimal features. IEEE Trans Med Imaging 21(8):924–933

    Article  Google Scholar 

  16. Gooßen A, Schlüter M, Pralow T, Grigat RR (2008) A stitching algorithm for automatic registration of digital radiographs. In: Campilho A, Kamel M (eds) Image analysis and recognition, vol 5112. Springer, Berlin, pp 854–862

    Chapter  Google Scholar 

  17. Gooßen A, Peters D, Gernoth T, Pralow T, Grigat RR (2009) Intelligent feature selection for model-based bone segmentation in digital radiographs. In: 9th international conference on technology and applications in biomedicine, ITAB 2009. IEEE Press, New York, pp 1–4

    Google Scholar 

  18. Gower J (1975) Generalized procrustes analysis. Psychometrika 40:33–51

    Article  MATH  MathSciNet  Google Scholar 

  19. Gregory J, Testi D, Stewart A, Undrill P, Reid D, Aspden R (2004) A method for assessment of the shape of the proximal femur and its relationship to osteoporotic hip fracture. Osteoporos Int 15:5–11

    Article  Google Scholar 

  20. Hankemeier S, Gosling T, Richter M, Hufner T, Hochhausen C, Krettek C (2006) Computer-assisted analysis of lower limb geometry: higher intraobserver reliability compared to conventional method. Comput Aided Surg 11:81–86

    Article  Google Scholar 

  21. Jeong Y, Radke RJ, Lovelock DM (2010) Bilinear models for inter- and intra-patient variation of the prostate. Phys Med Biol 55(13):3725

    Article  Google Scholar 

  22. King DG, Steventon DM, O’Sullivan MP, Cook AM, Hornsby VPL, Jefferson IG, King PR (1994) Reproducibility of bone ages when performed by radiology registrars: an audit of Tanner and Whitehouse II versus Greulich and Pyle methods. Br J Radiol 67:848–851

    Article  Google Scholar 

  23. Oost E, Koning G, Sonka M, Reiber JH, Lelieveldt BP (2005) Automated segmentation of X-ray left ventricular angiograms using multi-view active appearance models and dynamic programming. In: Frangi A, Radeva P, Santos A, Hernandez M (eds) Functional imaging and modeling of the heart. Springer, Berlin, pp 23–32

    Chapter  Google Scholar 

  24. Pafilas D, Nayagam S (2008) The pelvic support osteotomy: indications and preoperative planning. Strateg Trauma Limb Reconstr 3(2):83–92

    Article  Google Scholar 

  25. Paley D, Herzenberg J (2002) Principles of deformity correction, 1st edn. Springer, Berlin

    Google Scholar 

  26. Pyle SI, Hoerr NL (1955) Radiographic Atlas of the skeletal development of the knee, a standard of reference. Blackwell Scientific, Oxford

    Google Scholar 

  27. Rogers M, Graham J (2002) Robust active shape model search. In: Computer vision, ECCV 2002. Springer, Berlin, pp 289–312

    Google Scholar 

  28. Romdhani S, Gong S, Psarrou A, Psarrou R (1999) A multi-view nonlinear Active Shape Model using Kernel PCA. In: British machine vision conference. BMVA Press, Birmingham, pp 483–492

    Google Scholar 

  29. Ruppertshofen H, Lorenz C, Beyerlein P, Salah Z, Rose G, Schramm H (2010) Fully automatic model creation for object localization utilizing the generalized hough transform. In: Meinzer HP, Deserno TM, Handels H, Tolxdorff T (eds) Bildverarbeitung für die Medizin 2010: Algorithmen – Systeme – Anwendungen, pp 331–335

    Google Scholar 

  30. Sabharwal S, Zhao C, McKeon J, McClemens E, Edgar M, Behrens F (2006) Computed radiographic measurement of limb-length discrepancy. J Bone Joint Surg 88:2243–2251

    Article  Google Scholar 

  31. Schmitt H, Kappel H, Moser M, Cardenas-Montemayor E, Engelleiter K, Kuni B, Clarius M (2008) Determining knee joint alignment using digital photographs. Knee Surg Sports Traumatol Arthrosc 16:776–780

    Article  Google Scholar 

  32. Schreiber J, Schubert R, Kuhn V (2006) Femur detection in radiographs using template-based registration. In: Handels H, Ehrhardt J, Horsch A, Meinzer HP, Tolxdorff T (eds) Bildverarbeitung für die Medizin 2006: Algorithmen – Systeme – Anwendungen, pp 111–115

    Chapter  Google Scholar 

  33. Seise M, McKenna SJ, Ricketts IW, Wigderowitz CA (2005) Segmenting tibia and femur from knee X-ray images. In: Medical image understanding and analysis, pp 103–106

    Google Scholar 

  34. Tenenbaum JB, Freeman WT (2000) Separating style and content with bilinear models. Neural Comput 12(6):1247–1283

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Gooßen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gooßen, A., Hermann, E., Weber, G.M. et al. Model-based segmentation of pediatric and adult joints for orthopedic measurements in digital radiographs of the lower limbs. Comput Sci Res Dev 26, 107–116 (2011). https://doi.org/10.1007/s00450-010-0139-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00450-010-0139-8

Keywords

Navigation