Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Chiral Polyhedra in 3-Dimensional Geometries and from a Petrie–Coxeter Construction

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We study chiral polyhedra in 3-dimensional geometries (Euclidean, hyperbolic, and projective) in a unified manner. This extends to hyperbolic and projective spaces some structural results in the classification of chiral polyhedra in Euclidean 3-space given in 2005 by Schulte. Then, we describe a way to produce examples with helical faces based on a classic Petrie–Coxeter construction, yielding a new family in \(\mathbb {S}^3\) which is described exhaustively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arocha, J.L., Bracho, J., Montejano, L.: Regular projective polyhedra with planar faces I. Aequationes Math. 59(1–2), 55–73 (2000)

    Article  MathSciNet  Google Scholar 

  2. Bracho, J.: Regular projective polyhedra with planar faces II. Aequationes Math. 59(1–2), 160–176 (2000)

    Article  MathSciNet  Google Scholar 

  3. Bracho, J., Hubard, I., Pellicer, D.: A finite chiral \(4\)-polytope in \({\mathbb{R}}^4\). Discrete Comput. Geom. 52(4), 799–805 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bracho, J., Hubard, I., Pellicer, D.: Realising equivelar toroids of type \(\{4,4\}\). Discrete Comput. Geom. 55(4), 934–954 (2016)

    Article  MathSciNet  Google Scholar 

  5. Burgiel, H., Stanton, D.: Realizations of regular abstract polyhedra of types \(\{3,6\}\) and \(\{6,3\}\). Discrete Comput. Geom. 24(2–3), 241–255 (2000)

    Article  MathSciNet  Google Scholar 

  6. Conder, M.D.E.: Regular orientable maps of genus \(2\) to \(301\). https://www.math.auckland.ac.nz/~conder/OrientableRegularMaps301.txt

  7. Conway, J.H., Burgiel, H., Goodman-Strauss, Ch.: The Symmetries of Things. A K Peters, Wellesley (2008)

    MATH  Google Scholar 

  8. Coxeter, H.S.M.: Regular skew polyhedra in three and four dimensions, and their topological analogues. Proc. Lond. Math. Soc. 43(1), 33–62 (1937)

    Article  MathSciNet  Google Scholar 

  9. Coxeter, H.S.M.: Regular Polytopes. Dover, New York (1973)

    MATH  Google Scholar 

  10. Dress, A.W.M.: A combinatorial theory of Grünbaum’s new regular polyhedra. I. Grünbaum’s new regular polyhedra and their automorphism group. Aequationes Math. 23(2–3), 252–265 (1981)

    Article  MathSciNet  Google Scholar 

  11. Dress, A.W.M.: A combinatorial theory of Grünbaum’s new regular polyhedra. II. Complete enumeration. Aequationes Math. 29(2–3), 222–243 (1985)

    Article  MathSciNet  Google Scholar 

  12. Du Val, P.: Homographies. Quaternions and Rotations. Oxford Mathematical Monographs. Clarendon Press, Oxford (1964)

    MATH  Google Scholar 

  13. Euclid: Euclid’s Elements. Green Lion Press, Santa Fe (2002)

  14. Garner, C.W.L.: Regular skew polyhedra in hyperbolic three-space. Can. J. Math. 19, 1179–1186 (1967)

    Article  MathSciNet  Google Scholar 

  15. Grünbaum, B.: Regular polyhedra—old and new. Aequationes Math. 16(1–2), 1–20 (1977)

    Article  MathSciNet  Google Scholar 

  16. Hartley, M.I.: An atlas of small regular abstract polytopes. https://www.abstract-polytopes.com/atlas/

  17. Hubard, I.: Two-orbit polyhedra from groups. Eur. J. Comb. 31(3), 943–960 (2010)

    Article  MathSciNet  Google Scholar 

  18. Hubard, I., Schulte, E., Weiss, A.I.: Petrie–Coxeter maps revisited. Beiträge Algebra Geom. 47(2), 329–343 (2006)

    MathSciNet  MATH  Google Scholar 

  19. McMullen, P.: Four-dimensional regular polyhedra. Discrete Comput. Geom. 38(2), 355–387 (2007)

    Article  MathSciNet  Google Scholar 

  20. McMullen, P.: Regular polytopes of nearly full rank. Discrete Comput. Geom. 46(4), 660–703 (2011)

    Article  MathSciNet  Google Scholar 

  21. McMullen, P., Schulte, E.: Self-dual regular \(4\)-polytopes and their Petrie–Coxeter-polyhedra. Results Math. 12(3–4), 366–375 (1987)

    Article  MathSciNet  Google Scholar 

  22. McMullen, P., Schulte, E.: Abstract Regular Polytopes. Encyclopedia of Mathematics and Its Applications, vol. 92. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  23. Monson, B., Weiss, A.I.: Realizations of regular toroidal maps of type \(\{4,4\}\). Discrete Comput. Geom. 24(2–3), 453–465 (2000)

    Article  MathSciNet  Google Scholar 

  24. Pellicer, D.: Cleaved abstract polytopes. Combinatorica 38(3), 709–737 (2018)

    Article  MathSciNet  Google Scholar 

  25. Pellicer, D., Weiss, A.I.: Combinatorial structure of Schulte’s chiral polyhedra. Discrete Comput. Geom. 44(1), 167–194 (2010)

    Article  MathSciNet  Google Scholar 

  26. Poinsot, L.: Mémoire sur les polygones et les polyèdres. J. École Polytech. 10(4), 16–48 (1810)

    Google Scholar 

  27. Schulte, E.: Chiral polyhedra in ordinary space. I. Discrete Comput. Geom. 32(1), 55–99 (2004)

    Article  MathSciNet  Google Scholar 

  28. Schulte, E.: Chiral polyhedra in ordinary space. II. Discrete Comput. Geom. 34(2), 181–229 (2005)

    Article  MathSciNet  Google Scholar 

  29. Schulte, E., Weiss, A.I.: Chiral polytopes. In: Applied Geometry and Discrete Mathematics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 493–516. American Mathematical Society, Providence (1991)

Download references

Acknowledgements

The authors thank the financial support of projects PAPIIT-UNAM: IN-100518 and IN-109218. They are also grateful to the referees, whose suggestions improved the final version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Hubard.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bracho, J., Hubard, I. & Pellicer, D. Chiral Polyhedra in 3-Dimensional Geometries and from a Petrie–Coxeter Construction. Discrete Comput Geom 66, 1025–1052 (2021). https://doi.org/10.1007/s00454-021-00317-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-021-00317-0

Keywords

Mathematics Subject Classification

Navigation