Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Short Solution of the Kissing Number Problem in Dimension Three

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We give a short solution of the kissing number problem in dimension three.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availibility

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Anstreicher, K.M.: The thirteen spheres: a new proof. Discret. Comput. Geom. 31(4), 613–625 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Böröczky, K.: The Newton–Gregory problem revisited. In: Discrete Geometry. Monogr. Textbooks Pure Appl. Math., vol. 253, pp. 103–110. Dekker, New York (2003)

  3. Delsarte, P.: An Algebraic Approach to the Association Schemes of Coding Theory. Philips Res. Rep. Suppl., vol. 10. N.V. Philips’ Gloeilampenfabrieken, Eindhoven (1973)

  4. Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geometriae Dedicata 6(3), 363–388 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kabatyansky, G.A., Levenshtein, V.I.: Bounds for packings on the sphere and in space. Problemy Peredachi Informacii 14(1), 3–25 (1978). (in Russian)

    MathSciNet  Google Scholar 

  6. Leech, J.: The problem of the thirteen spheres. Math. Gaz. 40, 22–23 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  7. Levenshtein, V.I.: Boundaries for packings in \(n\)-dimensional Euclidean space. Dokl. Akad. Nauk SSSR 245(6), 1299–1303 (1979). (in Russian)

    MathSciNet  Google Scholar 

  8. Maehara, H.: The problem of thirteen spheres—a proof for undergraduates. Eur. J. Comb. 28(6), 1770–1778 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Musin, O.R.: The kissing problem in three dimensions. Discret. Comput. Geom. 35(3), 375–384 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Musin, O.R.: The kissing number in four dimensions. Ann. Math. 168(1), 1–32 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Odlyzko, A.M., Sloane, N.J.A.: New bounds on the number of unit spheres that can touch a unit sphere in \(n\) dimensions. J. Comb. Theory Ser. A 26(2), 210–214 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pfender, F.: Improved Delsarte bounds for spherical codes in small dimensions. J. Comb. Theory Ser. A 114(6), 1133–1147 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schütte, K., van der Waerden, B.L.: Das Problem der dreizehn Kugeln. Math. Ann. 125, 325–334 (1953)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks three anonymous referees whose help allowed him to fix the case of three points and improve the readability of the paper in general.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Glazyrin.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glazyrin, A. A Short Solution of the Kissing Number Problem in Dimension Three. Discrete Comput Geom 69, 931–935 (2023). https://doi.org/10.1007/s00454-021-00311-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-021-00311-6

Keywords

Mathematics Subject Classification

Navigation