Abstract
All SL(n) contravariant \(L_{p}\) harmonic valuations on convex polytopes are completely classified without homogeneity assumptions.
Similar content being viewed by others
References
Alesker, S.: Continuous rotation invariant valuations on convex sets. Ann. Math. 149(3), 977–1005 (1999)
Alesker, S.: Description of translation invariant valuations on convex sets with solution of P. McMullen’s conjecture. Geom. Funct. Anal. 11(2), 244–272 (2001)
Alesker, S., Bernig, A., Schuster, F.E.: Harmonic analysis of translation invariant valuations. Geom. Funct. Anal. 21(4), 751–773 (2011)
Campi, S., Gronchi, P.: The \(L^{p}\)-Busemann–Petty centroid inequality. Adv. Math. 167(1), 128–141 (2002)
Fleury, B., Guedon, O., Paouris, G.: A stability result for mean width of \(L_{p}\)-centroid bodies. Adv. Math. 214(2), 865–877 (2007)
Gardner, R.J.: A positive answer to the Busemann–Petty problem in three dimensions. Ann. Math. 140(2), 435–447 (1994)
Gardner, R.J., Giannopoulos, A.A.: \(p\)-cross-section bodies. Indiana Univ. Math. J. 48(2), 593–613 (1999)
Gardner, R.J., Koldobsky, A., Schlumprecht, T.: An analytic solution to the Busemann–Petty problem on sections of convex bodies. Ann. Math. 149(2), 691–703 (1999)
Grinberg, E., Zhang, G.: Convolutions, transforms, and convex bodies. Proc. Lond. Math. Soc. 78(3), 77–115 (1999)
Gruber, P.M.: Convex and Discrete Geometry. Grundlehren der Mathematischen Wissenschaften, vol. 336. Springer, Berlin (2007)
Haberl, C.: Star body valued valuations. Indiana Univ. Math. J. 58(5), 2253–2267 (2009)
Haberl, C.: Blaschke valuations. Am. J. Math. 133(3), 717–751 (2011)
Haberl, C.: Minkowski valuations intertwining the special linear group. J. Eur. Math. Soc. (JEMS) 14(5), 1565–1597 (2012)
Haberl, C., Ludwig, M.: A characterization of \(L_{p}\) intersection bodies. Int. Math. Res. Not. 2006, 10548 (2006)
Haberl, C., Parapatits, L.: The centro-affine Hadwiger theorem. J. Am. Math. Soc. 27(3), 685–705 (2014)
Haberl, C., Parapatits, L.: Valuations and surface area measures. J. Reine Angew. Math. 687, 225–245 (2014)
Haberl, C., Parapatits, L.: Moments and valuations. Am. J. Math. 138(6), 1575–1603 (2016)
Haberl, C., Parapatits, L.: Centro-affine tensor valuations. Adv. Math. 316, 806–865 (2017)
Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin (1957)
Klain, D.A.: Star valuations and dual mixed volumes. Adv. Math. 121(1), 80–101 (1996)
Klain, D.A., Rota, G.-C.: Introduction to Geometric Probability. Cambridge University Press, Cambridge (1997)
Klartag, B., Milman, E.: Centroid bodies and the logarithmic Laplace transform—A unified approach. Geom. Funct. Anal. 262(1), 10–34 (2012)
Li, J., Leng, G.: \(L_{p}\) Minkowski valuations on polytopes. Adv. Math. 299, 139–173 (2016)
Li, J., Ma, D.: Laplace transforms and valuations. J. Funct. Anal. 272(2), 738–758 (2017)
Ludwig, M.: Moment vectors of polytopes. Rend. Circ. Mat. Palermo 2(Suppl. 70), 123–138 (2002)
Ludwig, M.: Projection bodies and valuations. Adv. Math. 172(2), 158–168 (2002)
Ludwig, M.: Valuations on polytopes containing the origin in their interiors. Adv. Math. 170(2), 239–256 (2002)
Ludwig, M.: Ellipsoids and matrix-valued valuations. Duke Math. J. 119(1), 159–188 (2003)
Ludwig, M.: Minkowski valuations. Trans. Am. Math. Soc. 357(10), 4191–4213 (2005)
Ludwig, M.: Intersection bodies and valuations. Am. J. Math. 128(6), 1409–1428 (2006)
Ludwig, M.: Minkowski areas and valuations. J. Differ. Geom. 86(1), 133–161 (2010)
Ludwig, M., Reitzner, M.: A classification of \(\rm SL(n)\) invariant valuations. Ann. Math. 172(2), 1219–1267 (2010)
Ludwig, M., Reitzner, M.: \( {SL}(n)\) invariant valuations on polytopes. Discrete Comput. Geom. 57(3), 571–581 (2017)
Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. Math. 71(2), 232–261 (1988)
Lutwak, E.: Centroid bodies and dual mixed volumes. Proc. Lond. Math. Soc. 60(2), 365–391 (1990)
Lutwak, E., Yang, D., Zhang, G.: \(L_{p}\) affine isoperimetric inequalities. J. Differ. Geom. 56(1), 111–132 (2000)
Lutwak, E., Yang, D., Zhang, G.: Moment-entropy inequalities. Ann. Probab. 32(1B), 757–774 (2004)
Lutwak, E., Zhang, G.: Blaschke–Santaló inequalities. J. Differ. Geom. 47(1), 1–16 (1997)
Milman, V.D., Pajor, A.: Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed \(n\)-dimensional space. In: Lindenstrauss, J., Milman, V.D. (eds.) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1376, pp. 64–104. Springer, Berlin (1989)
Paouris, G.: Concentration of mass on isotropic convex bodies. Geom. Funct. Anal. 16(5), 1021–1049 (2006)
Parapatits, L.: \( {SL}(n)\)-contravariant \(L_{p}\)-Minkowski valuations. Trans. Am. Math. Soc. 366(3), 1195–1211 (2014)
Parapatits, L.: \( {SL}(n)\)-covariant \(L_{p}\)-Minkowski valuations. J. Lond. Math. Soc. 89(2), 397–414 (2014)
Petty, C.M.: Centroid surfaces. Pac. J. Math. 11, 1535–1547 (1961)
Rubin, B.: Generalized Minkowski-Funk transforms and small denominators on the sphere. Fract. Calc. Appl. Anal. 3(2), 177–203 (2000)
Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, 2nd edn. Cambridge University Press, Cambridge (2014)
Schuster, F.E., Wannerer, T.: \( {GL}(n)\) contravariant Minkowski valuations. Trans. Am. Math. Soc. 364(2), 815–826 (2012)
Wannerer, T.: \( {GL}(n)\) equivariant Minkowski valuations. Indiana Univ. Math. J. 60(5), 1655–1672 (2011)
Yaskin, V., Yaskina, M.: Centroid bodies and comparison of volumes. Indiana Univ. Math. J. 55(3), 1175–1194 (2006)
Zeng, C., Ma, D.: \( {SL}(n)\) covariant vector valuations on polytopes. Trans. Am. Math. Soc. 370(12), 8999–9023 (2018)
Zhang, G.: A positive solution to the Busemann–Petty problem in \({\mathbb{R}}^{4}\). Ann. Math. 149(2), 535–543 (1999)
Acknowledgements
The work of the first author was supported by China Scholarship Council (CSC 201808430267) and the Natural Science Foundation of Hunan Province (2019JJ50172). The work of the second author was supported by the Natural Science Foundation of Hunan Province (2017JJ3085).
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge: János Pach
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, L., Wang, W. SL(n) Contravariant \(L_{p}\) Harmonic Valuations on Polytopes. Discrete Comput Geom 66, 977–995 (2021). https://doi.org/10.1007/s00454-019-00171-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-019-00171-1