Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

SL(n) Contravariant \(L_{p}\) Harmonic Valuations on Polytopes

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

All SL(n) contravariant \(L_{p}\) harmonic valuations on convex polytopes are completely classified without homogeneity assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alesker, S.: Continuous rotation invariant valuations on convex sets. Ann. Math. 149(3), 977–1005 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Alesker, S.: Description of translation invariant valuations on convex sets with solution of P. McMullen’s conjecture. Geom. Funct. Anal. 11(2), 244–272 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Alesker, S., Bernig, A., Schuster, F.E.: Harmonic analysis of translation invariant valuations. Geom. Funct. Anal. 21(4), 751–773 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Campi, S., Gronchi, P.: The \(L^{p}\)-Busemann–Petty centroid inequality. Adv. Math. 167(1), 128–141 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Fleury, B., Guedon, O., Paouris, G.: A stability result for mean width of \(L_{p}\)-centroid bodies. Adv. Math. 214(2), 865–877 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Gardner, R.J.: A positive answer to the Busemann–Petty problem in three dimensions. Ann. Math. 140(2), 435–447 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Gardner, R.J., Giannopoulos, A.A.: \(p\)-cross-section bodies. Indiana Univ. Math. J. 48(2), 593–613 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Gardner, R.J., Koldobsky, A., Schlumprecht, T.: An analytic solution to the Busemann–Petty problem on sections of convex bodies. Ann. Math. 149(2), 691–703 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Grinberg, E., Zhang, G.: Convolutions, transforms, and convex bodies. Proc. Lond. Math. Soc. 78(3), 77–115 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Gruber, P.M.: Convex and Discrete Geometry. Grundlehren der Mathematischen Wissenschaften, vol. 336. Springer, Berlin (2007)

    Google Scholar 

  11. Haberl, C.: Star body valued valuations. Indiana Univ. Math. J. 58(5), 2253–2267 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Haberl, C.: Blaschke valuations. Am. J. Math. 133(3), 717–751 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Haberl, C.: Minkowski valuations intertwining the special linear group. J. Eur. Math. Soc. (JEMS) 14(5), 1565–1597 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Haberl, C., Ludwig, M.: A characterization of \(L_{p}\) intersection bodies. Int. Math. Res. Not. 2006, 10548 (2006)

    MATH  Google Scholar 

  15. Haberl, C., Parapatits, L.: The centro-affine Hadwiger theorem. J. Am. Math. Soc. 27(3), 685–705 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Haberl, C., Parapatits, L.: Valuations and surface area measures. J. Reine Angew. Math. 687, 225–245 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Haberl, C., Parapatits, L.: Moments and valuations. Am. J. Math. 138(6), 1575–1603 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Haberl, C., Parapatits, L.: Centro-affine tensor valuations. Adv. Math. 316, 806–865 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin (1957)

    MATH  Google Scholar 

  20. Klain, D.A.: Star valuations and dual mixed volumes. Adv. Math. 121(1), 80–101 (1996)

    MathSciNet  MATH  Google Scholar 

  21. Klain, D.A., Rota, G.-C.: Introduction to Geometric Probability. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  22. Klartag, B., Milman, E.: Centroid bodies and the logarithmic Laplace transform—A unified approach. Geom. Funct. Anal. 262(1), 10–34 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Li, J., Leng, G.: \(L_{p}\) Minkowski valuations on polytopes. Adv. Math. 299, 139–173 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Li, J., Ma, D.: Laplace transforms and valuations. J. Funct. Anal. 272(2), 738–758 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Ludwig, M.: Moment vectors of polytopes. Rend. Circ. Mat. Palermo 2(Suppl. 70), 123–138 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Ludwig, M.: Projection bodies and valuations. Adv. Math. 172(2), 158–168 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Ludwig, M.: Valuations on polytopes containing the origin in their interiors. Adv. Math. 170(2), 239–256 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Ludwig, M.: Ellipsoids and matrix-valued valuations. Duke Math. J. 119(1), 159–188 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Ludwig, M.: Minkowski valuations. Trans. Am. Math. Soc. 357(10), 4191–4213 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Ludwig, M.: Intersection bodies and valuations. Am. J. Math. 128(6), 1409–1428 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Ludwig, M.: Minkowski areas and valuations. J. Differ. Geom. 86(1), 133–161 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Ludwig, M., Reitzner, M.: A classification of \(\rm SL(n)\) invariant valuations. Ann. Math. 172(2), 1219–1267 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Ludwig, M., Reitzner, M.: \( {SL}(n)\) invariant valuations on polytopes. Discrete Comput. Geom. 57(3), 571–581 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. Math. 71(2), 232–261 (1988)

    MathSciNet  MATH  Google Scholar 

  35. Lutwak, E.: Centroid bodies and dual mixed volumes. Proc. Lond. Math. Soc. 60(2), 365–391 (1990)

    MathSciNet  MATH  Google Scholar 

  36. Lutwak, E., Yang, D., Zhang, G.: \(L_{p}\) affine isoperimetric inequalities. J. Differ. Geom. 56(1), 111–132 (2000)

    MATH  Google Scholar 

  37. Lutwak, E., Yang, D., Zhang, G.: Moment-entropy inequalities. Ann. Probab. 32(1B), 757–774 (2004)

    MathSciNet  MATH  Google Scholar 

  38. Lutwak, E., Zhang, G.: Blaschke–Santaló inequalities. J. Differ. Geom. 47(1), 1–16 (1997)

    MATH  Google Scholar 

  39. Milman, V.D., Pajor, A.: Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed \(n\)-dimensional space. In: Lindenstrauss, J., Milman, V.D. (eds.) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1376, pp. 64–104. Springer, Berlin (1989)

    Google Scholar 

  40. Paouris, G.: Concentration of mass on isotropic convex bodies. Geom. Funct. Anal. 16(5), 1021–1049 (2006)

    MathSciNet  MATH  Google Scholar 

  41. Parapatits, L.: \( {SL}(n)\)-contravariant \(L_{p}\)-Minkowski valuations. Trans. Am. Math. Soc. 366(3), 1195–1211 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Parapatits, L.: \( {SL}(n)\)-covariant \(L_{p}\)-Minkowski valuations. J. Lond. Math. Soc. 89(2), 397–414 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Petty, C.M.: Centroid surfaces. Pac. J. Math. 11, 1535–1547 (1961)

    MathSciNet  MATH  Google Scholar 

  44. Rubin, B.: Generalized Minkowski-Funk transforms and small denominators on the sphere. Fract. Calc. Appl. Anal. 3(2), 177–203 (2000)

    MathSciNet  MATH  Google Scholar 

  45. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, 2nd edn. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  46. Schuster, F.E., Wannerer, T.: \( {GL}(n)\) contravariant Minkowski valuations. Trans. Am. Math. Soc. 364(2), 815–826 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Wannerer, T.: \( {GL}(n)\) equivariant Minkowski valuations. Indiana Univ. Math. J. 60(5), 1655–1672 (2011)

    MathSciNet  MATH  Google Scholar 

  48. Yaskin, V., Yaskina, M.: Centroid bodies and comparison of volumes. Indiana Univ. Math. J. 55(3), 1175–1194 (2006)

    MathSciNet  MATH  Google Scholar 

  49. Zeng, C., Ma, D.: \( {SL}(n)\) covariant vector valuations on polytopes. Trans. Am. Math. Soc. 370(12), 8999–9023 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Zhang, G.: A positive solution to the Busemann–Petty problem in \({\mathbb{R}}^{4}\). Ann. Math. 149(2), 535–543 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of the first author was supported by China Scholarship Council (CSC 201808430267) and the Natural Science Foundation of Hunan Province (2019JJ50172). The work of the second author was supported by the Natural Science Foundation of Hunan Province (2017JJ3085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Wang, W. SL(n) Contravariant \(L_{p}\) Harmonic Valuations on Polytopes. Discrete Comput Geom 66, 977–995 (2021). https://doi.org/10.1007/s00454-019-00171-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-019-00171-1

Keywords

Mathematics Subject Classification

Navigation