Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A 15-Vertex Triangulation of the Quaternionic Projective Plane

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

In 1992, Brehm and Kühnel constructed an 8-dimensional simplicial complex \(M^8_{15}\) with 15 vertices as a candidate to be a minimal triangulation of the quaternionic projective plane. They managed to prove that it is a manifold “like a projective plane” in the sense of Eells and Kuiper. However, it was not known until now if this complex is PL homeomorphic (or at least homeomorphic) to \({\mathbb {H}}P^2\). This problem was reduced to the computation of the first rational Pontryagin class of this combinatorial manifold. Realizing an algorithm due to Gaifullin, we compute the first Pontryagin class of \(M^8_{15}\). As a result, we obtain that it is indeed a minimal triangulation of \({\mathbb {H}}P^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Björner, A., Lutz, F.H.: Simplicial manifolds, bistellar flips and a 16-vertex triangulation of the Poincaré homology 3-sphere. Exp. Math. 9(2), 275–289 (2000)

    Article  MATH  Google Scholar 

  2. Brehm, U., Kühnel, W.: Combinatorial manifolds with few vertices. Topology 26(4), 465–473 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brehm, U., Kühnel, W.: 15-Vertex triangulations of 8-manifolds. Math. Ann. 294, 167–193 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brumfiel, G.: On integral PL characteristic classes. Topology 8, 39–46 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheeger, J.: Spectral geometry of singular Riemannian spaces. J. Differ. Geom. 18(4), 575–657 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eells, J., Kuiper, N.H.: Manifolds which are like projective planes. Inst. Hautes Études Sci. Publ. Math. 14, 5–46 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  7. Effenberger, F., Spreer, J.: simpcomp—a GAP toolkit for simplicial complexes, Version 2.0.0 (2013). http://code.google.com/p/simpcomp

  8. Forman, R.: Morse theory for cell complexes. Adv. Math. 134(1), 90–145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gabrièlov, A.M., Gel’fand, I.M., Losik, M.V.: Combinatorial calculation of characteristic classes. Funct. Anal. Appl. 9(1), 48–49 (1975)

    Article  MATH  Google Scholar 

  10. Gabrièlov, A.M., Gel’fand, I.M., Losik, M.V.: Combinatorial calculus of characteristic classes. Funct. Anal. Appl. 9(3), 186–202 (1975)

    Article  MATH  Google Scholar 

  11. Gabrièlov, A.M., Gel’fand, I.M., Losik, M.V.: A local combinatorial formula for the first class of Pontryagin. Funct. Anal. Appl. 10(1), 12–15 (1976)

    Article  MATH  Google Scholar 

  12. Gaifullin, A.A.: Local formulae for combinatorial Pontryagin classes. Izv. Math. 68(5), 861–910 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gaifullin, A.A.: The construction of combinatorial manifolds with prescribed sets of links of vertices. Izv. Math. 72(5), 845–899 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gaifullin, A.A.: Configuration spaces, bistellar moves, and combinatorial formulae for the first Pontryagin class. Proc. Steklov Inst. Math. 268, 70–86 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gel’fand, I.M., MacPherson, R.D.: A combinatorial formula for the Pontrjagin classes. Bull. Am. Math. Soc. 26(2), 304–309 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gorodkov, D.: A minimal triangulation of the quaternionic projective plane. Russ. Math. Surv. 71(6), 1140–1142 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kervaire, M.A., Milnor, J.W.: Groups of homotopy spheres: I. Ann. Math. 77(3), 504–537 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kramer, L.: Projective planes and their look-alikes. J. Differ. Geom. 64, 1–55 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lutz, F.H.: Triangulated manifolds with few vertices: Combinatorial manifolds (2005). arxiv:0506372

  20. MacPherson, R.: The combinatorial formula of Gabrielov, Gel’fand and Losik for the first Pontrjagin class. Lecture Notes in Mathematics, vol. 677, pp. 105–124. Springer, Berlin (1978)

  21. Milin, L.: A combinatorial computation of the first Pontryagin class of the complex projective plane. Geom. Dedicata 49, 253–291 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pachner, U.: Konstruktionsmethoden und das kombinatorische homöomorphieproblem für triangulationen kompakter semilinearer mannigfaltigkeiten. Abh. Math. Sem. Univ. Hamb. 57, 69–86 (1987)

    Article  MATH  Google Scholar 

  23. The GAP Group. GAP—Groups, Algorithms, and Programming, Version 4.7.7 (2015). http://www.gap-system.org

Download references

Acknowledgements

The author would like to thank his advisor Alexander A. Gaifullin for suggesting this interesting problem, for invaluable discussions, constant attention to this work and patience.

Funding

Funding was provided by the Russian Science Foundation (Grant No. 14-50-00005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Gorodkov.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been supported in part by the Moebius Contest Foundation for Young Scientists and by the Russian Science Foundation (Project 14-50-00005).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorodkov, D. A 15-Vertex Triangulation of the Quaternionic Projective Plane. Discrete Comput Geom 62, 348–373 (2019). https://doi.org/10.1007/s00454-018-00055-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-018-00055-w

Keywords

Navigation