Abstract
We introduce a new model of random d-dimensional simplicial complexes, for \(d\ge 2\), whose \((d-1)\)-cells have bounded degrees. We show that with high probability, complexes sampled according to this model are coboundary expanders. The construction relies on Keevash’s recent result on designs (The existence of designs; arXiv:1401.3665, 2014), and the proof of the expansion uses techniques developed by Evra and Kaufman in (Bounded degree cosystolic expanders of every dimension; arXiv:1510.00839, 2015). This gives a full solution to a question raised in Dotterrer and Kahle (J Topol Anal 4(4): 499–514, 2012), which was solved in the two-dimensional case by Lubotzky and Meshulam (Adv Math 272: 743–760, 2015).
Similar content being viewed by others
Notes
Not necessarily with a complete \((d-1)\)-skeleton.
References
Alon, N., Milman, V.D.: \(\lambda _1\), isoperimetric inequalities for graphs, and superconcentrators. J. Comb. Theory Ser. B 38(1), 73–88 (1985)
Chung, F.R.K.: Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, vol. 92. American Mathematical Society, Providence (1997)
Cohen, E., Mubayi, D., Ralli, P., Tetali, P.: Inverse expander mixing for hypergraphs. Electron. J. Comb. 23(2) (2016)
Dodziuk, J.: Difference equations, isoperimetric inequality and transience of certain random walks. Trans. Am. Math. Soc. 284(2), 787–794 (1984)
Dotterrer, D., Kahle, M.: Coboundary expanders. J. Topol. Anal. 4(4), 499–514 (2012)
Dotterrer, D., Kaufman, T., Wagner, U.: On expansion and topological overlap. In: Fekete, S., Lubiw, A. (eds.) Proceedings of the 32nd International Symposium on Computational Geometry (SoCG’16). Leibniz International Proceedings in Informatics (LIPIcs), vol. 51, pp. 35:1–35:10. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl (2016)
Eckmann, B.: Harmonische Funktionen und Randwertaufgaben in einem Komplex. Comment. Math. Helv. 17, 240–255 (1945)
Evra, S.: Finite quotients of Bruhat–Tits buildings as geometric expanders. J. Topol. Anal. 9(1), 51–66 (2017)
Evra, S., Golubev, K., Lubotzky, A.: Mixing properties and the chromatic number of Ramanujan complexes. Int. Math. Res. Not. IMRN 2015(22), 11520–11548 (2015)
Evra, S., Kaufman, T.: Bounded degree cosystolic expanders of every dimension (2015). arXiv:1510.00839
Fox, J., Gromov, M., Lafforgue, V., Naor, A., Pach, J.: Overlap properties of geometric expanders. J. Reine Angew. Math. 671, 49–83 (2012)
Friedman, J.: On the second eigenvalue and random walks in random \(d\)-regular graphs. Combinatorica 11(4), 331–362 (1991)
Friedman, J.: A proof of Alon’s second eigenvalue conjecture and related problems. Memoirs of the American Mathematical Society, vol. 195 (910). American Mathematical Society, Providence (2008)
Garland, H.: \(p\)-Adic curvature and the cohomology of discrete subgroups of \(p\)-adic groups. Ann. Math. 97, 375–423 (1973)
Golubev, K.: On the chromatic number of a simplicial complex. Combinatorica 37(5), 953–964 (2017)
Gromov, M.: Singularities, expanders and topology of maps. Part 2: From combinatorics to topology via algebraic isoperimetry. Geom. Funct. Anal. 20(2), 416–526 (2010)
Gundert, A., Szedlák, M.: Higher dimensional Cheeger inequalities. In: Proceedings of the 13th Annual Symposium on Computational Geometry (SoCG’14), pp. 181–188. ACM, New York (2014)
Gundert, A., Wagner, U.: On eigenvalues of random complexes. Isr. J. Math. 216(2), 545–582 (2016)
Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. 43(4), 439–561 (2006)
Horak, D., Jost, J.: Spectra of combinatorial Laplace operators on simplicial complexes. Adv. Math. 244, 303–336 (2013)
Kaufman, T., Kazhdan, D., Lubotzky, A.: Isoperimetric inequalities for Ramanujan complexes and topological expanders. Geom. Funct. Anal. 26(1), 250–287 (2016)
Keevash, P.: The existence of designs (2014). arXiv:1401.3665
Keevash, P.: Counting designs (2015). arXiv:1504.02909
Knowles, A., Rosenthal, R.: Eigenvalue confinement and spectral gap for random simplicial complexes. Rand. Struct. Algorithms 51(3), 506–537 (2017)
Li, W.C.W.: Ramanujan hypergraphs. Geom. Funct. Anal. 14(2), 380–399 (2004)
Linial, N., Meshulam, R.: Homological connectivity of random 2-complexes. Combinatorica 26(4), 475–487 (2006)
Lubotzky, A.: Discrete groups, expanding graphs and invariant measures. Modern Birkhäuser Classics. Birkhäuser, Basel (2010). With an appendix by Jonathan D. Rogawski, Reprint of the 1994 edition
Lubotzky, A.: Ramanujan complexes and high dimensional expanders. Jpn. J. Math. 9(2), 137–169 (2014)
Lubotzky, A., Meshulam, R.: Random Latin squares and 2-dimensional expanders. Adv. Math. 272, 743–760 (2015)
Lubotzky, A., Meshulam, R., Mozes, S.: Expansion of building-like complexes. Groups Geom. Dyn. 10(1), 155–175 (2016)
Lubotzky, A., Samuels, B., Vishne, U.: Ramanujan complexes of type \(\widetilde{A}_d\). Isr. J. Math. 149, 267–299 (2005)
Matoušek, J., Wagner, U.: On Gromov’s method of selecting heavily covered points. Discrete Comput. Geom. 52(1), 1–33 (2014)
Meshulam, R., Wallach, N.: Homological connectivity of random \(k\)-dimensional complexes. Rand. Struct. Algorithms 34(3), 408–417 (2009)
Mukherjee, S., Steenbergen, J.: Random walks on simplicial complexes and harmonics. Rand. Struct. Algorithms 49(2), 379–405 (2016)
Oppenheim, I.: Local spectral expansion approach to high dimensional expanders (2014). arXiv:1407.8517
Oppenheim, I.: Local spectral expansion approach to high dimensional expanders. Part I: descent of spectral gaps. Discrete Comput. Geom. 59(2), 293–330 (2018)
Parzanchevski, O.: Mixing in high-dimensional expanders. Comb. Probab. Comput. 26(5), 746–761 (2017)
Parzanchevski, O., Rosenthal, R.: Simplicial complexes: spectrum, homology and random walks. Rand. Struct. Algorithms 50(2), 225–261 (2017)
Parzanchevski, O., Rosenthal, R., Tessler, R.J.: Isoperimetric inequalities in simplicial complexes. Combinatorica 36(2), 195–227 (2016)
Puder, D.: Expansion of random graphs: new proofs, new results. Invent. Math. 201(3), 845–908 (2015)
Rosenthal, R.: Simplicial branching random walks and their applications (2014). arXiv:1412.5406
Steenbergen, J., Klivans, C., Mukherjee, S.: A Cheeger-type inequality on simplicial complexes. Adv. Appl. Math. 56, 56–77 (2014)
Wagner, U.: Minors in random and expanding hypergraphs. In: Proceedings of the 27th Annual Symposium on Computational Geometry (SoCG’11), pp. 351–360. ACM, New York (2011)
Acknowledgements
The authors would like to thank the anonymous referees for their suggestions which helped to improve this manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge: János Pach
A. Lubotzky: Research supported in part by the ERC, ISF and NSF; Z. Luria and A. Lubotzky: Supported by Dr. Max Rössler, the Walter Haefner Foundation and the ETH Foundation; R. Rosenthal: Partially supported by an ETH fellowship.
Rights and permissions
About this article
Cite this article
Lubotzky, A., Luria, Z. & Rosenthal, R. Random Steiner systems and bounded degree coboundary expanders of every dimension. Discrete Comput Geom 62, 813–831 (2019). https://doi.org/10.1007/s00454-018-9991-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-018-9991-2