Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Integral Homology of Random Simplicial Complexes

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

The random 2-dimensional simplicial complex process starts with a complete graph on n vertices, and in every step a new 2-dimensional face, chosen uniformly at random, is added. We prove that with probability tending to 1 as \(n\rightarrow \infty \), the first homology group over \(\mathbb {Z}\) vanishes at the very moment when all the edges are covered by triangular faces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Babson, E., Hoffman, C., Kahle, M.: The fundamental group of random 2-complexes. J. Am. Math. Soc. 24(1), 1–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bollobás, B.: Modern Graph Theory. Chapter VII: Random Graphs. Graduate Texts in Mathematics, vol. 184. Springer, New York (1998)

    Book  Google Scholar 

  3. Bollobás, B., Thomason, A.: Random graphs of small order. In: Rucinski, A., Karonski, M. (eds.) Random Graphs ’83. North-Holland Mathematics Studies. Annals of Discrete Mathematics, vol. 28, pp. 47–97. North-Holland, Amsterdam (1985)

    Google Scholar 

  4. Gundert, A., Wagner, U.: On topological minors in random simplicial complexes. Proc. Am. Math. Soc. 144(4), 1815–1828 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  6. Hoffman, C., Kahle, M., Paquette, E.: Spectral gaps of random graphs and applications to random topology (2012). arXiv:1201.0425

  7. Hoffman, C., Kahle, M., Paquette, E.: The threshold for integer homology in random \(d\)-complexes. Discrete Comput. Geom. 57(4), 810–823 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kahle, M., Pittel, B.: Inside the critical window for cohomology of random \(k\)-complexes. Random Struct. Algorithms 48(1), 102–124 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kalai, G.: Enumeration of \(\mathbf{Q}\)-acyclic simplicial complexes. Israel J. Math. 45(4), 337–351 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Korándi, D., Peled, Y., Sudakov, B.: A random triadic process. SIAM J. Discrete Math. 30(1), 1–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Linial, N., Meshulam, R.: Homological connectivity of random 2-complexes. Combinatorica 26(4), 475–487 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Linial, N., Peled, Y.: On the phase transition in random simplicial complexes. Ann. Math. 184(3), 745–773 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Meshulam, R., Wallach, N.: Homological connectivity of random \(k\)-dimensional complexes. Random Struct. Algorithms 34(3), 408–417 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was carried out when TŁ visited the Institute for Mathematical Research (FIM) of ETH Zürich. He would like to thank FIM for the hospitality and for creating a stimulating research environment. TŁ partially supported by NCN Grant 2012/06/A/ST1/00261. YP is grateful to the Azrieli foundation for the award of an Azrieli fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Łuczak.

Additional information

Editor in Charge: Kenneth Clarkson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Łuczak, T., Peled, Y. Integral Homology of Random Simplicial Complexes. Discrete Comput Geom 59, 131–142 (2018). https://doi.org/10.1007/s00454-017-9938-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-017-9938-z

Keywords

Mathematics Subject Classification

Navigation