Abstract
In this paper we determine new upper bounds for the maximal density of translative packings of superballs in three dimensions (unit balls for the \(l^p_3\)-norm) and of Platonic and Archimedean solids having tetrahedral symmetry. Thereby, we improve Zong’s recent upper bound for the maximal density of translative packings of regular tetrahedra from \(0.3840\ldots \) to \(0.3745\ldots \), getting closer to the best known lower bound of \(0.3673\ldots \) We apply the linear programming bound of Cohn and Elkies which originally was designed for the classical problem of densest packings of round spheres. The proofs of our new upper bounds are computational and rigorous. Our main technical contribution is the use of invariant theory of pseudo-reflection groups in polynomial optimization.
Similar content being viewed by others
Notes
The reason why we pick odd d is so that the resulting problem admits a strictly feasible solution. This will be better explained in Sect. 6.1.
References
Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge University Press, Cambridge (1999)
Bachoc, C., Gijswijt, D.C., Schrijver, A., Vallentin, F.: Invariant semidefinite programs. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research and Management Science, vol. 166, pp. 219–269. Springer, New York (2012). arXiv:1007.2905
Betke, U., Henk, M.: Densest lattice packings of 3-polytopes. Comput. Geom. 16(3), 157–186 (2000). arXiv:math/9909172v1
Blekherman, G., Parrilo, P.A., Thomas, R.R. (eds.): Semidefinite Optimization and Convex Algebraic Geometry. MOS-SIAM Series on Optimization, vol. 13. SIAM, Philadelphia (2013)
Chen, E.R., Engel, M., Glotzer, S.C.: Dense crystalline dimer packings of regular tetrahedra. Discrete Comput. Geom. 44(2), 253–280 (2010). arXiv:1001.0586
Cohn, H., Elkies, N.: New upper bounds on sphere packings I. Ann. Math. 157(2), 689–714 (2003). arXiv:math/0110009
Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20(1), 99–148 (2007). arXiv:math/0607446
Cohn, H., Kumar, A., Miller, S.D., Radchenko, D., Viazovska, M.: The sphere packing problem in dimension 24 (2016). arXiv:1603.06518
Cohn, H., Miller, S.D.: Some properties of optimal functions for sphere packing in dimensions 8 and 24 (2016). arXiv:1603.04759
Cohn, H., Zhao, Y.: Sphere packing bounds via spherical codes. Duke Math. J. 163(10), 1965–2002 (2014). arXiv:1212.5966
Damasceno, P.F., Engel, M., Glotzer, S.C.: Crystalline assemblies and densest packings of a family of truncated tetrahedra and the role of directional entropic forces. ACS Nano 6(1), 609–614 (2012). arXiv:1109.1323
D’Angelo, J.P.: Inequalities from Complex Analysis. Carus Mathematical Monographs, vol. 28. Mathematical Association of America, Washington (2002)
D’Angelo, J.P.: Hermitian analogues of Hilbert’s 17th problem. Adv. Math. 226(5), 4607–4637 (2011). arXiv:1012.2479
Dunkl, C.F.: Cube group invariant spherical harmonics and Krawtchouk polynomials. Math. Z. 177(4), 561–577 (1981)
Elkies, N.D., Odlyzko, A.M., Rush, J.A.: On the packing densities of superballs and other bodies. Invent. Math. 105(3), 613–639 (1991)
Fejes Tóth, G., Fodor, F., Vígh, V.: The packing density of the \(n\)-dimensional cross-polytope. Discrete Comput. Geom. 54(1), 182–194 (2015). arXiv:1503.04571v1
Fujisawa, K., Fukuda, M., Kobayashi, K., Kojima, M., Nakata, K., Nakata, M., Yamashita, M.: SDPA (SemiDefinite Programming Algorithm) User’s Manual—Version 7.0.5. Research Report B-448. Tokyo Institute of Technology, Tokyo (2008) http://www.is.titech.ac.jp/research/research-report/B/B-448, http://sdpa.sourceforge.net
Gardner, M.: Mathematical Carnival, 2nd edn. Mathematical Association of America, Washington, DC (1989)
Gatermann, K., Parrilo, P.A.: Symmetry groups, semidefinite programs, and sums of squares. J. Pure Appl. Algebra 192(1–3), 95–128 (2004). arXiv:math/0211450
Gauß, C.F.: Recension der “Untersuchung über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber”. J. Reine Angew. Math. 20, 312–320 (1840)
Goethals, J.M., Seidel, J.J.: Cubature formulae, polytopes, and spherical designs. In: Davis, C., Grünbaum, B., Sherk, F.A. (eds.) The Geometric Vein, pp. 203–218. Springer, New York (1981)
de Graaf, J., van Roij, R., Dijkstra, M.: Dense regular packings of irregular nonconvex particles. Phys. Rev. Lett. 107(15), # 155501 (2011)
Gravel, S., Elser, V., Kallus, Y.: Upper bound on the packing density of regular tetrahedra and octahedra. Discrete Comput. Geom. 46, 799–818 (2011). arXiv:1008.2830
Groemer, H.: Über die dichteste gitterförmige Lagerung kongruenter Tetraeder. Monatsh. Math. 66(1), 12–15 (1962)
Hales, T.C., Ferguson, S.P.: In: Lagarias, J.C. (ed.) The Kepler Conjecture: The Hales–Ferguson Proof. Springer, New York (2011)
Hicks, J.: A Poet with a Slide Rule: Piet Hein Bestrides Art and Science. Life Magazine, October 14, 55–66 (1966)
Hoylman, F.J.: The densest lattice packing of tetrahedra. Bull. Am. Math. Soc. 76(1), 135–137 (1970)
Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)
Jiao, Y., Stillinger, F.H., Torquato, S.: Optimal packings of superballs. Phys. Rev. E 79(4), 041309 (2009). arXiv:0902.1504
Jiao, Y., Stillinger, F.H., Torquato, S.: Erratum: optimal packings of superballs [Phys. Rev. E 79, 041309 (2009)]. Phys. Rev. E 84(6), 069902 (2011)
Jiao, Y., Torquato, S.: A packing of truncated tetrahedra that nearly fills all of space and its melting properties. J. Chem. Phys. 135(15), 151101 (2011). arXiv:1107.2300
Kabatiansky, G.A., Levenshtein, V.I.: Bounds for packings on a sphere and in space. Probl. Inf. Transm. 14(1), 1–17 (1978)
de Laat, D., de Oliveira Filho, F.M., Vallentin, F.: Upper bounds for packings of spheres of several radii. Forum Math. Sigma 2, e23 (2014). arXiv:1206.2608
Lagarias, J.C., Zong, C.: Mysteries in packing regular tetrahedra. Notices Am. Math. Soc. 59(11), 1540–1549 (2012)
Minkowski, H.: Dichteste gitterförmige Lagerung kongruenter Körper. Nachr. Ges. Wiss. Göttingen, 311–355 (1904)
Ni, R., Gantapara, A.P., de Graaf, J., van Roij, R., Dijkstra, M.: Phase diagram of colloidal hard superballs: from cubes via spheres to octahedra. Soft Matter 8, 8826–8834 (2012). arXiv:1111.4357
de Oliveira Filho, F.M., Vallentin, F.: Computing upper bounds for packing densities of congruent copies of a convex body I (2013). arXiv:1308.4893
Pütz, A.: Translative Packings of Convex Bodies and Finite Reflection Groups. Master’s Thesis, University of Cologne (2016)
Revol, N., Rouillier, F.: Motivations for an arbitrary precision interval arithmetic and the MPFI library. Reliab. Comput. 11(4), 275–290 (2005)
Reznick, B.: Some concrete aspects of Hilbert’s 17th problem. In: Delzell, C.N., Madden, J.J. (eds.) Real Algebraic Geometry and Ordered Structures. Contemporary Mathematics, vol. 253, pp. 251–272. American Mathematical Society, Providence, RI (2000)
Rossi, L., Sacanna, S., Irvine, W.T.M., Chaikin, P.M., Pine, D.J., Philipse, A.P.: Cubic crystals from cubic colloids. Soft Matter 7, 4139–4142 (2011)
Rush, J.A., Sloane, N.J.A.: An improvement to the Minkowski–Hlawka bound for packing superballs. Mathematika 34(1), 8–18 (1987)
Serre, J.-P.: Linear Representations of Finite Groups. Graduate Texts in Mathematics, vol. 42. Springer, New York (1977)
Stanley, R.P.: Invariants of finite groups and their application to combinatorics. Bull. Am. Math. Soc. (N.S.) 1(3), 475–511 (1979)
Stein, E.M., Weiss, G.L.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, vol. 3. Princeton University Press, Princeton (1971)
Stein, W.A., et al.: Sage Mathematics Software (Version 6.2). The Sage Development Team (http://www.sagemath.org) (2012)
Sturmfels, B.: Algorithms in Invariant Theory. Texts and Monographs in Symbolic Computation. Springer, Vienna (1993)
Terras, A.: Fourier Analysis on Finite Groups and Applications. London Mathematical Society Student Texts, vol. 43. Cambridge University Press, Cambridge (1999)
Torquato, S., Jiao, Y.: Dense packings of the Platonic and Archimedean solids. Nature 460, 876–879 (2009). arXiv:0908.4107
Torquato, S., Jiao, Y.: Dense packings of polyhedra: Platonic and Archimedean solids. Phys. Rev. E 80(4), 041104 (2009)
Viazovska, M.S.: The sphere packing problem in dimension 8 (2016). arXiv:1603.04246
Ziegler, G.M.: Three mathematics competitions. In: Schleicher, D., Lackmann, M. (eds.) An Invitation to Mathematics: From Competitions to Research, pp. 195–205. Springer, Heidelberg (2011)
Zong, C.: On the translative packing densities of tetrahedra and cuboctahedra. Adv. Math. 260, 130–190 (2014). arXiv:1208.0420
Acknowledgements
Frank Vallentin thanks Peter Littelmann for a helpful discussion. We also thank the referees for their thorough comments which helped to improve the paper. Frank Vallentin was partially supported by VIDI Grant 639.032.917 from the Netherlands Organization for Scientific Research (NWO).
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge: Günter M. Ziegler
Rights and permissions
About this article
Cite this article
Dostert, M., Guzmán, C., Filho, F.M.d.O. et al. New Upper Bounds for the Density of Translative Packings of Three-Dimensional Convex Bodies with Tetrahedral Symmetry. Discrete Comput Geom 58, 449–481 (2017). https://doi.org/10.1007/s00454-017-9882-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-017-9882-y
Keywords
- Translative packings
- Sums of Hermitian squares
- Pseudo-reflections
- Superballs
- Platonic solids
- Archimedean solids
- Hilbert’s 18th problem
- Semidefinite programming
- Interval arithmetic