Abstract
The minimum density of a covering of the plane with translates of a triangle is \(\frac{3}{2}\) .
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Besicovitch, A.S.: Measure of asymmetry of convex curves. J. Lond. Math. Soc. 23, 237–240 (1948)
Böröczky, K. Jr.: Finite Packing and Covering. Cambridge Tracts in Mathematics, vol. 154. Cambridge University Press, Cambridge (2004)
Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005)
Fáry, I.: Sur la densité des réseaux de domaines convexes. Bull. Soc. Math. Fr. 178, 152–161 (1950)
Fejes Tóth, G., Kuperberg, W.: Packing and covering with convex sets. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry, vol. A, B, pp. 799–860. North-Holland, Amsterdam (1993)
Fejes Tóth, G.: Packing and covering. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry. Discrete Mathematics and its Applications, vol. 1, pp. 25–52. Chapman Hall/CRC, Boca Raton (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Januszewski, J. Covering the Plane with Translates of a Triangle. Discrete Comput Geom 43, 167–178 (2010). https://doi.org/10.1007/s00454-009-9203-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-009-9203-1