Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Applications of quantitative thermal infrared hyperspectral imaging (8–14 μm): measuring volcanic SO2 mass flux and determining plume transport velocity using a single sensor

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Remote measurements of sulfur dioxide (SO2) path-concentration and emission rate (mass flux), released by passive volcanic degassing, are a key diagnostic of volcanic behavior. SO2 gas concentrations are also important for public health. Despite the significance of measuring SO2 mass flux at active volcanoes, an accurate method is still very difficult to obtain due largely to uncertainties of plume transport velocities and radiative transfer calculations. Here, we present a new infrared imaging method for deriving SO2 flux at active volcanoes with less than 20% plume transport velocity and radiative transfer uncertainties. The thermal hyperspectral imager (THI) was used for this study. THI is an uncooled remote sensing long-wave thermal infrared (TIR) imaging hyperspectral sensor that can obtain ~ 50 wavelength samples between 8 and 14 μm. Measurements of SO2 at the summit of Kīlauea volcano, collected using THI, are presented, where we obtained (for the periods of July 24–26, 2017, and February 5–6, 2018) a SO2 flux raging between 0 and 20 kg/s with occasional peaks higher than 40 kg/s. The spatial distribution of SO2 path-concentrations was obtained from the THI images by processing them using a newly developed SO2 retrieval algorithm, the SO2 amenable lookup table algorithm (SO2-ALTA). The sampling rate (30 Hz) of the microbolometer camera within THI means raw frames can be used for wind velocity derivation. Volcanic plume motion can be thus inferred by tracking plume features in sequential frames using spatial correlation techniques and knowing the camera angular orientation. Volcanic SO2 flux was estimated from the spatial distribution of SO2 and wind velocity. We evaluated temporal trends of the SO2 flux during the day and the night at the summit of Kīlauea volcano under both clear sky weather with northeasterly trade winds and cloudy sky conditions with low variable wind. These tests showed that the camera and techniques described in this paper provide an effective tool for monitoring SO2 fluxes remotely with less than 20% plume transport velocity and radiative transfer uncertainties and under a variety of background conditions (clear and cloudy sky, cold and hot backgrounds).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aiuppa A, Moretti R, Federico C, Giudice G, Gurrieri S, Liuzzo M, Papale P, Shinohara H, Valenza M (2007) Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology 35(12):1115. https://doi.org/10.1130/G24149A.

    Article  Google Scholar 

  • Allard P, Carbonnelle J, Me’trich N, Loyer H, Zettwoog P (1994) Sulphur output and magma degassing budget of Stromboli volcano. Nature 368:326–330. https://doi.org/10.1038/368326a0

    Article  Google Scholar 

  • Allard P, Aiuppa A, Beatuducel F, Gaudin D, Di Napoli R, Calabrese S, Parello F, Crispi O, Hammouya G, Tamburello G (2014) Steam and gas emission rate from La Soufriere volcano, Guadeloupe (Lesser Antilles): implications for the magmatic supply during degassing unrest. Chem Geol 384:76–93

    Article  Google Scholar 

  • Archer CL, Jacobson MZ (2003) Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements. J Geophys Res 108(D9):4289. https://doi.org/10.1029/2002JD002076

    Article  Google Scholar 

  • Baxter, P.J. (1999) Impacts of eruptions on human health. Published in: Sigurdsson, H., et al (eds.) Encyclopedia of volcanoes. San Diego: Academic Press. 1035–1043

    Chapter  Google Scholar 

  • Berryman JG (1985) Measurement of spatial correlation functions using image processing techniques. J Appl Phys 57(7):2374–2384

    Article  Google Scholar 

  • Bluth GJS, Shannon JM, Watson IM, Prata AJ, Realmuto VJ (2007) Development of an ultra-violet digital camera for volcanic SO2 imaging. J Volcanol Geotherm Res 161:47–56

    Article  Google Scholar 

  • Bobrowski N, Hönninger G, Galle B, Platt U (2003) Detection of bromine monoxide in a volcanic plume. Nature 423:273–276

    Article  Google Scholar 

  • Burton MR, Prata F, Platt U (2014) Volcanological applications of SO2 cameras. J Volcanol Geotherm Res 300(15):2–6

    Google Scholar 

  • Businger S, Huff R, Pattantyus A, Horton K, Sutton AJ, Elias T, Cherubini T (2015) Observing and forecasting Vog dispersion from Kīlauea volcano, Hawaii. Bull Am Meteorol Soc 96:1667–1686. https://doi.org/10.1175/BAMS-D-14-00150.1

    Article  Google Scholar 

  • Butz A, Dinger AS, Bobrowski N, Kostinek J, Fieber L, Fischerkeller C, Giuffrida GB, Hase F, Klappenbach F, Kuhn J, Lübcke P, Tirpitz L, Tu Q (2017) Remote sensing of volcanic CO2, HF, HCl, SO2 and BrO in the downwind plume of Mt. Etna. Atmos Meas Tech 10:1–14. https://doi.org/10.5194/amt-2016-254

    Article  Google Scholar 

  • Carn SA, Fioletov VE, McLinden CA, Li C, Krotkov NA (2017) A decade of global volcanic SO2 emissions measured from space. Sci Rep volume 7, Article number: 44095.

  • Coradini S, Pugnaghi S, Piscini A, Guerrieri L, Merucci L, Picchiani M, Chini M (2014) Volcanic ash and SO2 retrievals using synthetic MODIS TIR data: comparison between inversion procedures and sensitivity analysis. Annals of Geophysics, Fast Track 2:2014. https://doi.org/10.4401/ag-6616

    Article  Google Scholar 

  • Edmonds M, Herd RA, Galle B, Oppenheimer CM (2003) Automated, high time-resolution measurements of SO2 flux at Soufrière Hills volcano, Montserrat. Bull Volcanol 65:578–586. https://doi.org/10.1007/s00445-003-0286-x

    Article  Google Scholar 

  • EPA, National Ambient Air Quality Standards (NAAQS), 2011 [Online], Available at https://www.epa.gov/ttn/naaqs/criteria.html Accessed Jan 2018

  • Favalli M, Mazzarini F, Pareschi MT, Boschi E (2004) Role of local wind circulation in plume monitoring at Mt. Etna volcano (Sicily): insights from a mesoscale numerical model. Geophys Res Lett 31:L09105. https://doi.org/10.1029/2003GL019281

    Article  Google Scholar 

  • Francis P, Burton M, Oppenheimer C (1998) Remote measurements of volcanic gas compositions by solar occultation spectroscopy. Nature 396:567–570

    Article  Google Scholar 

  • Gabrieli A, Wilson L, Lane S (2015) Volcano-tectonic interactions as triggers of volcanic eruptions. Journal of the Geologists’ Association, UK 126:675–682. https://doi.org/10.1016/j.pgeola.2015.10.002

    Article  Google Scholar 

  • Gabrieli A, Wright R, Lucey PG, Porter JN, Garbeil H, Pilger E, Wood M (2016) Characterization and initial field test of a long wave thermal infrared hyperspectral imager for measuring SO2 in volcanic plumes. Bull Volcanol. https://doi.org/10.1007/s00445-016-1068-6

  • Gabrieli A, Wright R, Porter JN, Lucey PG (2017) Validating the accuracy of SO2 gas retrievals in the thermal infrared (8–14 μm). Bull Volcanol. https://doi.org/10.1007/s00445-017-1163-3

  • Galle B, Oppenheimer C, Geyer A, McGonigle AJS, Edmonds M, Horrocks LA (2003) A miniaturised UV spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance. J Volcanol Geotherm Res 119:241–254. https://doi.org/10.1016/S0377-0273(02)00356-6

    Article  Google Scholar 

  • Galle B, Johansson M, Rivera C, Zhang Y, Kihlman M, Kern C, Lehmann T, Platt U, Arellano S, Hidalgo S (2010) Network for observation of volcanic and atmospheric change (NOVAC) - a global network for volcanic gas monitoring: network layout and instrument description. J Geophys Res 115:D05304. https://doi.org/10.1029/2009JD011823

    Article  Google Scholar 

  • Gerlach TM, McGee KA, Sutton AJ, Elias T (1998) Rates of volcanic CO2 degassing from airborne determinations of SO2, emission rates and plume CO2/SO2: test study at Pu’u ‘O’o cone, Kilauea volcano, Hawaii. Geophys Res Lett 25:2675–2678

    Article  Google Scholar 

  • Gliss J, Bobrowski N, Vogel L et al (2015) OClO and BrO observations in the volcanic plume of Mt. Etna-implications on the chemistry of chlorine and bromine species in volcanic plumes. Atmos Chem Phys 15:5659–5681. https://doi.org/10.5194/acp-15-5659-2015

    Article  Google Scholar 

  • Gliss J, Stebel K, Kylling A, Sudbø A (2018) Improved optical flow velocity analysis in SO2 camera images of volcanic plumes - implications for emission-rate retrievals investigated at Mt Etna, Italy. Atmospheric Measurement Techniques 2018(11):781–801

    Article  Google Scholar 

  • Goff F, Love SP, Warren RG, Counce D, Obenholzner J, Siebe C, and Schmidt SC (2001) Passive infrared remotesensing evidence for large, intermittent CO2emissions atPopocat́ epetl volcano, Mexico, Chem Geol 177:133–156. https://doi.org/10.1016/S0009-2541(00)00387-9

    Article  Google Scholar 

  • Horton K, Williams-Jones G, Garbeil H, Sutton AJ, Elias T, Clegg S (2005) FLYSPEC: validation of a robust and versatile ultraviolet correlation spectrometer for the real-time measurements of volcanic SO2 emissions. Bull Volcanol

  • Kern C, Deutschmann T, Vogel L, Wöhrbach M, Wagner T, Platt U (2009) Radiative transfer corrections for accurate spectroscopic measurements of volcanic gas emissions. Bull Volcanol 72:233–247. https://doi.org/10.1007/s00445-009-0313-7

    Article  Google Scholar 

  • Kern C, Werner C, Elias T, Sutton AJ, Luebcke P (2013) Applying UV cameras for SO2 detection to distal or optically thick volcanic plumes. J Geophys Res 262:80–89

    Google Scholar 

  • Kern C, Masias P, Apaza F, Reath KA, Platt U (2017) Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy. J Geophys Res Solid Earth 122:3540–3564. https://doi.org/10.1002/2017JB014020

    Article  Google Scholar 

  • Klein A, Lübcke P, Bobrowski N, Kuhn J, Platt U (2017) Plume propagation direction determination with SO2 cameras. Atmos Meas Tech 10:979–987. https://doi.org/10.5194/amt-10-979-2017

    Article  Google Scholar 

  • Kyle TG (1991) Atmospheric transmission, emission, and scattering. Elseiver.

  • La Spina A, Burton M, Allard P, Alparone S, Mure F (2015) Open-path FTIR spectroscopy of magma degassing processes during eight lava fountains on Mount Etna. Earth Planet Sci Lett 413:123–134

    Article  Google Scholar 

  • Liou KN (2002) An introduction to atmospheric radiation. Elseiver.

  • Lopez T, Thomas HE, Prata a J et al (2014) Volcanic plume characteristics determined using an infrared imaging camera. J Volcanol Geotherm Res 300:148–166. https://doi.org/10.1016/j.jvolgeores.2014.12.009

    Article  Google Scholar 

  • Love SP, Goff F, Counce D, Siebe C, Delgado H (1998) Passive infrared spectroscopy of the eruption plume at Popocatépetl volcano, Mexico. Nature 396:563–567

    Article  Google Scholar 

  • Lucey PG, Horton KA, Williams T (2008) Performance of a long-wave infrared hyperspectral imager using a Sagnac interferometer and an uncooled microbolometer array. Appl Opt 47(28):F107–F113

    Article  Google Scholar 

  • Mc Gonigle AJS, Inguaggiato S, Aiuppa A, Hayes AR, Oppenheimer C (2005) Accurate measurements of volcanic SO2 flux: determination of plume transport velocity and integrated SO2 concentration with a single device. Geochem Geophys Geosyst. https://doi.org/10.1029/2004GC000845

  • McGonigle AJS, Pering TD, Wilkes TC, Tamburello G, D’Aleo R, Bitetto M, Aiuppa A, Willmott JR (2017) Ultraviolet imaging of volcanic plumes: a new paradigm in volcanology. Geosciences 7:68. https://doi.org/10.3390/geosciences703006

    Article  Google Scholar 

  • Michelson AA (1881) The relative motion of the earth and the luminiferous ether. Am J Sci 1881(22):120–129

    Article  Google Scholar 

  • Moffat AJ, Millan MM (1971) The applications of optical correlation techniques to the remote sensing of SO2 plumes using sky light. Atmos Environ 5:677–690

    Article  Google Scholar 

  • Mori T, Mori T, Kazahaya K, Ohwada M, Hirabayashi J’, Yoshikawa S (2006) Effect of UV scattering on SO 2 emission rate measurements. Geophys Res Lett 33:1–5. https://doi.org/10.1029/2006GL026285

    Article  Google Scholar 

  • Mori T, Burton MR (2006) The SO2 camera: a simple, fast and cheap method for ground-based imaging of SO2 in volcanic plumes. Geophys Res Lett 33. https://doi.org/10.1029/2006GL027916

  • Mori T, Burton M (2009) Quantification of the gas mass emitted during single explosions on Stromboli with the SO2 imaging camera. Joruanl of Volcanology and Geothermal Research 188:395–400

    Article  Google Scholar 

  • Oppenheimer C, Francis P, Burton M, Maciejewski AJH, Boardman L (1998) Remote measurement of volcanic gases by Fourier transform infrared spectroscopy. Appl Phys B Lasers Opt 67:505–515

    Article  Google Scholar 

  • Oppenheimer C, McGonigle AJS, Allard P, Wooster MJ, Tsanev V (2004) Sulfur, heat, and magma budget for Erta ‘Ale lava lake. Ethiopia, Geology, 32, 509–512. https://doi.org/10.1130/G20281

  • Oppenheimer C, Bani P, Calkins JA, Burton MR, Sawyer GM (2006) Rapid FTIR sensing of volcanic gases released by Strombolian explosions at Yasur volcano, Vanuatu. Appl Phys B Laser Opt 85:453–460

    Article  Google Scholar 

  • Peters N, Hoffmann A, Barnie T, Herzog M, Oppenheimer C (2014) Use of motion estimation algorithms for improved flux measurements using SO2 cameras. J Volcanol Geotherm Res 300:58–69. https://doi.org/10.1016/j.jvolgeores.2014.08.031

    Article  Google Scholar 

  • Porter JN, Cao GX (2009) Using ground-based stereocameras to derive cloud-level wind fields. Opt Lett 34(16):2384–2386

    Article  Google Scholar 

  • Prata J, Bernardo C (2014) Retrieval of sulfur dioxide from a ground-based thermal infrared imaging camera. Atmospheric Measurement Techniques 7:2807–2828

    Article  Google Scholar 

  • Realmuto VJ, Abrams MJ, Buongiorno MF, Pieri DC (1994) The use of multispectral thermal infrared image data to estimate the sulfur dioxide flux from volcanoes: a case study from Mount Etna, Sicily, July 29, 1986. https://doi.org/10.1029/93JB02062

    Article  Google Scholar 

  • Schmidt A (2014) Volcanic gas and aerosol hazards from a future Laki-type eruption in Iceland. Published in: Papale, P. and Shroder, J.F. (eds.) Volcanic hazards, risks and disasters. Elsevier, pp 377–397

  • Spinetti C, Salerno GG, Caltabiano T, Carboni E, Clarisse L, Corradini S, Hedelt P, Grainger R, Koukouli M, Merucci L, Siddans R, Tampellini L, Theys N, Valks P, Zehner C (2015). Volcanic SO2 by UV-TIR satellite retrievals: validation by using ground-based network at Mt. Etna. Annals of geophysics 57. https://doi.org/10.4401/ag-6641

  • Stephens GL (1984) The parameterization of radiation for numerical weather prediction and climate models. Mon Weather Rev 112:826–867

    Article  Google Scholar 

  • Stoiber RE, Jepsen A (1973) Sulfur dioxide contributions to the atmosphere by volcanoes. Science 182:577–578

    Article  Google Scholar 

  • Stoiber RE, Malinconico JLL, Williams SN (1983) Use of the correlation spectrometer at volcanoes. Published in: Tazieff, H., Sabroux, J.C. (eds) Forecasting volcanic events. Elsevier, New York, pp 424–444

  • Upper Air Soundings (2019) University of Wyoming [Online]. Available at: <http://weather.uwyo.edu/upperair/sounding.html>. Accessed Feb 2018

  • Urai M (2004) Sulfur dioxide flux estimation from volcanoes using advanced spaceborne thermal emission and reflection radiometer—a case study of Miyakejima volcano, Japan. Journal of Volcanology and Geothermal Research Volume 134, Issues 1–2, 1 June 2004, Pages 1-13

    Article  Google Scholar 

  • Waller JA, Simoni D, Dance SL, Nichols NK (2016) Diagnosing observation error correlations for Doppler radar radial winds in the met office UKV model using observation-minus-background and observation-minus-analysis statistics. Am Meteorol Soc 144:3533–3551. https://doi.org/10.1175/MWR-D-15-0340.1

    Article  Google Scholar 

  • Wardell LJ, Kyle PR, Dunbar N, Christenson B (2001) White Island volcano, New Zealand: carbon dioxide and sulfur dioxide emission rates and melt inclusion studies. Chem Geol 177:187–200

    Article  Google Scholar 

  • Wright R, Lucey P, Crites S, Horton K, Wood M, Garbeil H (2013) BBM/EM design of the thermal hyperspectral imager: an instrument for remote sensing of earth’s surface, atmosphere and ocean, from a microsatellite platform. Acta Astronautica 87:182–192

    Article  Google Scholar 

  • Zuccaro G, De Gregorio D, Baxter P (2014). Human and structural vulnerability to volcanic processes. Published in: Papale, P. and Shroder, J.F. (eds.) Volcanic hazards, risks and disasters. Elsevier, pp 261–288

Download references

Acknowledgments

This work was performed by HIGP under subcontract to the Jet Propulsion Laboratory (subcontract number no. 1602222). We thank the United States Department of Interior National Parks Service for authorizing the collection of the field data reported in this paper (Permit number HAVO-2015-SCI-0050). We thank Dr. Matthew Patrick (Hawaiian Volcano Observatory, U.S. Geological Survey), for his great help with the field data collection and his insightful suggestions regarding comparing the time series of SO2 flux THI measurements with Real-time Seismic Amplitude Measurement (RSAM) from the Halemaʻumaʻu lava lake. We also thank the reviewers of this manuscript: Dr. Fred Prata (Norwegian Institute for Air Research - NILU and Nicarnica Aviation) and Dr. Christoph Kern (Volcano Science Center, U.S. Geological Survey), the Bulletin of Volcanology Associate Editor Dr. Patrick Allard (Institut de Physique du Globe de Paris, IPGP), and the Bulletin of Volcanology Executive Editor Dr. Andy Harris (Institut de Physique du Globe de Paris, IPGP) for their most valuable comments on the manuscript. Their feedback led us to an improvement of the work.

Funding

Additional funding was provided by NASA’s Earth Science Technology Office (Instrument Incubator Program, NNX14AE61G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Gabrieli.

Additional information

Editorial responsibility: P. Allard

This is HIGP publication number 2384 and SOEST publication number 10731.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabrieli, A., Wright, R., Porter, J.N. et al. Applications of quantitative thermal infrared hyperspectral imaging (8–14 μm): measuring volcanic SO2 mass flux and determining plume transport velocity using a single sensor. Bull Volcanol 81, 47 (2019). https://doi.org/10.1007/s00445-019-1305-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-019-1305-x

Keywords

Navigation