Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Halogen oxide measurements at Masaya Volcano, Nicaragua using active long path differential optical absorption spectroscopy

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Active Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) measurements of halogen oxides were conducted at Masaya Volcano, in Nicaragua from April 14 to 26, 2007. The active LP-DOAS system allowed night-time halogen measurements and reduced the ClO detection limit by an order of magnitude when compared to previous passive DOAS measurements, as wavelengths below 300 nm could be used for the DOAS retrievals. BrO was detected with an average BrO/SO2 molecular ratio of approximately 3 × 10−5 during the day. However, BrO values were below the detection limit of the instrument for all night-time measurements, a strong indication that BrO is not directly emitted, but rather the result of photochemical formation in the plume itself according to the autocatalytic “bromine explosion” mechanism. Despite the increased sensitivity, both ClO and OClO could not be detected. The achieved upper limits for the X/SO2 ratios were 5 × 10−3 and 7 × 10−6, respectively. A rough calculation suggests that ClO and OClO should be present at similar abundances in volcanic plumes. Since the DOAS technique is orders of magnitude more sensitive for OClO than for ClO, this indicates that OClO should always be detectable in plumes in which ClO is found. However, further LP-DOAS studies are needed to conclusively clarify the role of chlorine oxides in volcanic plumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aiuppa A, Federico C, Giudice G, Gurrieri S, Paonita A, Valenza M (2004) Plume chemistry provides insights into mechanisms of sulfur and halogen degassing in basaltic volcanoes. Earth Planet Sc Lett 222:469–483

    Article  Google Scholar 

  • Aiuppa A, Moretti R, Federico C, Gaetano G, Gurrieri S, Liuzzo M, Papale P, Shinohara H, Valenza M (2007) Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology 35:1115–1118

    Article  Google Scholar 

  • Alicke B, Hebestreit K, Stutz J, Platt U (1999) Iodine oxide in the marine boundary layer. Nature 397:572–573

    Article  Google Scholar 

  • Allan BJ, Plane JMC, McFiggans G (2001) Observations of OIO in the remote marine boundary layer. Geophys Res Lett 28:1945–1948

    Article  Google Scholar 

  • Arndt RL, Carmichael GR, Streets DG, Bhatti N (1997) Sulfur dioxide emissions and sectorial contributions to sulfur deposition in Asia. Atmos Environ 31:1553–1572

    Article  Google Scholar 

  • Birks JW, Shoemaker B, Leck TJ, Borders RA, Hart LJ (1977) Studies of reactions of importance in the stratosphere. II. Reactions involving chlorine nitrate and chlorine dioxide. J Chem Phys 66:4591–4599

    Article  Google Scholar 

  • Bobrowski N (2005) Volcanic Gas Studies by MAX-DOAS. PhD thesis, University of Heidelberg, Heidelberg

  • Bobrowski N, Platt U (2007) SO2/BrO ratios studied in five volcanic plumes. J Volcanol Geoth Res 166:147–160

    Article  Google Scholar 

  • Bobrowski N, Hönninger G, Galle B, Platt U (2003) Detection of bromine monoxide in a volcanic plume. Nature 423:273–276

    Article  Google Scholar 

  • Bobrowski N, von Glasow R, Aiuppa A, Inguaggiato S, Louban I, Ibrahim OW, Platt U (2007) Reactive halogen chemistry in volcanic plumes. J Geosphys Res 112:D06311

    Article  Google Scholar 

  • Bogumil K, Orphal J, Homan T, Voigt S, Spietz P, Fleischmann O, Vogel A, Hartmann M, Bovensmann H, Frerick J, Burrows J (2003) Measurements of molecular absorption spectra with the SCIAMACHY Pre-Flight Model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2,380 nm region. J Photoch Photobio A: Chem 157:167–184

    Article  Google Scholar 

  • Burton M, Oppenheimer C, Horrocks LA, Francis PW (2001) Diurnal changes in volcanic plume chemistry observed by lunar and solar occultation spectroscopy. Geophys Res Lett 28:843–846

    Article  Google Scholar 

  • Burton MR, Allard P, Murè F, La Spina A (2007a) Magmatic gas composition reveals the source depth of slug-driven Strombolian explosive activity. Science 317:227

    Article  Google Scholar 

  • Burton MR, Mader HM, Polacci M (2007b) The role of gas percolation in quiescent degassing of persistently active basaltic volcanoes. Earth Planet Sc Lett 264:46–60

    Article  Google Scholar 

  • Delmelle P, Baxter P, Beaulieu A, Burton M, Francis P, Garcia-Alavarez J, Horrocks L, Navarro M, Oppenheimer C, Rothery D, Rymer H, Amand KS, Stix J, Strauch W, Williams-Jones G (1999) Origin, effects of Masaya Volcano’s continued unrest probed in Nicaragua. EOS Trans Am Geophys Union 80:575–581

    Google Scholar 

  • Friedl RR, Sander SP (1989) Kinetics and product studies of the reaction of ClO + BrO using flash photolysis-ultraviolet absorption. J Phys Chem 93:4764–4771

    Article  Google Scholar 

  • Galle B, Oppenheimer C, Geyer A, McGonigle AJS, Edmonds M, Horrocks L (2002) A miniaturized ultraviolet spectrometer for remote sensing of SO2 fluxes: A new tool for volcano surveillance. J Volcanol Geoth Res 119:241–254

    Article  Google Scholar 

  • Gerlach TM (2004) Volcanic sources of tropospheric ozone-depleting trace gases. Geochem Geophy Geosy 5:Q09007

    Article  Google Scholar 

  • Graf H-F, Langmann B, Feichter J (1998) The contribution of Earth degassing to the atmospheric sulfur budget. Chem Geol 147:131–145

    Article  Google Scholar 

  • Halmer MM, Schmincke H-U, Graf H-F (2002) The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years. J Volcanol Geoth Res 115:511–528

    Article  Google Scholar 

  • Hausmann M, Platt U (1994) Spectroscopic measurement of bromine oxide and ozone in the high Arctic during Polar Sunrise Experiment 1992. J Geophys Res 99:25399–25413

    Article  Google Scholar 

  • Hebestreit K, Stutz J, Rosen D, Matveiv V, Peleg M, Luria M, Platt U (1999) DOAS measurements of tropospheric bromine oxide in mid-latitudes. Science 283:55–57

    Article  Google Scholar 

  • Hönninger G, Leser H, Sebastián O, Platt U (2004) Ground-based measurements of halogen oxides at the Hudson Bay by active longpath DOAS and passive MAX-DOAS. Geophys Res Lett 31:L04111

    Article  Google Scholar 

  • Horrocks L, Burton MR, Francis P, Oppenheimer C (1999) Stable gas plume composition measured by OP-FTIR spectroscopy at Masaya Volcano, Nicaragua, 1998–1999. Geophys Res Lett 26:3497–3500

    Article  Google Scholar 

  • Kaleschke L, Neff B, Plane JMC, Platt U, Richter A, Roscoe HK, Sander R, Shepson P, Sodeau J, Steffen A, Wagner T, Wolff E (2007) Halogens and their role in polar boundary-layer ozone depletion. Atmos Chem Phys 7:4375–4418

    Article  Google Scholar 

  • Kraus S (2004) DOASIS: DOAS Intelligent System.

  • Lee C, Kim YJ, Tanimoto H, Bobrowski N, Platt U, Mori T, Yamamoto K, Hong CS (2005) High ClO and ozone depletion observed in the plume of Sakurajima Volcano, Japan. Geophys Res Lett 32:21809

    Article  Google Scholar 

  • Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2:164–168

    Google Scholar 

  • Marquardt DW (1963) An algorithm for least squares estimation of non-linear parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  • Martin RS, Mather TA, Pyle DM (2006) High-temperature mixtures of magmatic and atmospheric gases. Geochem Geophy Geosy 7:Q04006

    Article  Google Scholar 

  • McBirney AR (1956) The Nicaraguan volcano Masaya and its Caldera. EOS Trans Am Geophys Union 37:83–96

    Google Scholar 

  • McGonigle AJS, Oppenheimer C, Galle B, Mather TA, Pyle DM (2002) Walking traverse and scanning DOAS measurements of volcanic gas emission rates. Geophys Res Lett 29:1985

    Article  Google Scholar 

  • McGonigle AJS, Delmelle P, Oppenheimer C, Tsanev VI, Delfosse T, Horton H, Williams-Jones G, Mather TA (2004) SO2 depletion in tropospheric volcanic plumes. Geophys Res Lett 31:L13201

    Article  Google Scholar 

  • Mori T, Mori T, Kazahaya K, Ohwada M, Hirabayashi J, Yoshikawa S (2006) Effect of UV scattering on SO2 emission rate measurements. Geophys Res Lett 33:L17315

    Article  Google Scholar 

  • NOVAC (2005) Network for Observation of Volcanic and Atmospheric Change. http://www.novac-project.eu

  • O’Dwyer M, Padgett MJ, McGonigle AJS, Oppenheimer C, Inguaggiato S (2003) Real-time measurement of volcanic H2S and SO2 concentrations by UV spectroscopy. Geophys Res Lett 30:1652

    Article  Google Scholar 

  • Oppenheimer C, Tsanev VI, Braban CF, Cox RA, Adams JW, Aiuppa A, Bobrowski N, Delmelle P, Barclay J, McGonigle AJS (2006) BrO formation in volcanic plumes. Geochim Cosmochim Ac 70:2935–2941

    Article  Google Scholar 

  • Platt U (1994) Differential Optical Absorption Spectroscopy (DOAS). In: Sigrist MW (ed) Monitoring by Spectroscopic Techniques. Wiley, New York, pp 27–84

    Google Scholar 

  • Platt U, Hönninger G (2003) The role of halogen species in the troposphere. Chemosphere 52:325–338

    Article  Google Scholar 

  • Platt U, Lehrer E (1997) Arctic Tropospheric Ozone Chemistry, ARCTOC. In final report EU-Proj. EV5V-CT93-0318 European Union

  • Platt U, Stutz J (2008) Differential Optical Absorption Spectroscopy—Principles and Applications. Springer, Berlin, pp 1–597

    Book  Google Scholar 

  • Rymer H, Van Wyk de Vries B, Stix J, Williams-Jones G (1998) Pit crater structure and processes governing persistent activity at Masaya Volcano, Nicaragua. Bull Volcanol 59:345–355

    Article  Google Scholar 

  • Saiz-Lopez A, Plane JMC (2004) Novel iodine chemistry in the marine boundary layer. Geophys Res Lett 31:L04112

    Article  Google Scholar 

  • Saiz-Lopez A, Plane JMC, Shillito JA (2004) Bromine oxide in the mid-latitude marine boundary layer. Geophys Res Lett 31:L03111

    Article  Google Scholar 

  • Saiz-Lopez A, Mahajan AS, Salmon RA, Bauguitte SJ-B, Jones AE, Roscoe HK, Plane JMC (2007) Boundary layer halogens in coastal Antarctica. Science 317:348–351

    Article  Google Scholar 

  • Simon FG, Schneider W, Moortgat GK, Burrows J (1990) A study of the ClO absorption cross-section between 240 and 310 nm and the kinetics of the self-reaction at 300 K. J Photoch Photobio 55:1–23

    Article  Google Scholar 

  • Simpson WR, von Glasow R, Riedel K, Anderson P, Ariya P, Bottenheim J, Burrows J, Carpenter L, Frieß U, Goodsite ME, Heard D, Hutterli M, Jacobi H-W, Kaleschke L, Neff B, Plane J, Platt U, Richter A, Roscoe H, Sander R, Shepson P, Sodeau J, Steffen A, Wagner T, Wolff E (2007) Halogens and their role in polar boundary-layer ozone depletion. Atmos Chem Phys 7:4375–4418

    Article  Google Scholar 

  • Stutz J, Platt U (1996) Numerical analysis and error estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods. Appl Opt 35:6041–6053

    Article  Google Scholar 

  • Stutz J, Ackermann R, Fast JD, Barrie L (2002) Atmospheric reactive chlorine and bromine at the Great Salt Lake, Utah. Geophys Res Lett 29:1380

    Article  Google Scholar 

  • Tuckermann M, Ackermann R, Gölz C, Lorenzen-Schmidt H, Senne T, Stutz J, Trost B, Unold W, Platt U (1997) DOAS-observation of halogen radical-catalyzed Arctic boundary layer ozone destruction during the ARCTOC-campaigns 1995 and 1996 in Ny-Alesund, Spitsbergen. Tellus 49B:533–555

    Google Scholar 

  • Voigt S, Orphal J, Bogumil K, Burrows JP (2001) The temperature dependence (203–293 K) of the absorption cross sections of O3 in the 230–850 nm region measured by Fourier-transform spectroscopy. J Photoch Photobio 143:1–9

    Article  Google Scholar 

  • von Glasow R, Crutzen PJ (2007) Tropospheric halogen chemistry. In: Holland HD, Turekian KK, Keeling RF (eds) Treatise on Geochemistry, Vol. vol. 4. Elsevier-Pergamon, Amsterdam, pp 21–64

    Google Scholar 

  • Wahner A, Tyndall G, Ravishankara AR (1987) Absorption cross sections for OClO as a function of temperature in the wavelength range 240–480 nm. J Phys Chem 91:2734–2738

    Article  Google Scholar 

  • Wahner A, Ravishankara AR, Sander SP, Friedl RR (1988) Absorption cross section of BrO between 312 and 385 nm at 298 and 223 K. Chem Phys Lett 152:507–512

    Article  Google Scholar 

  • Wennberg P (1999) Bromine explosion. Nature 397:299–300

    Article  Google Scholar 

  • Williams SN (1983) Geology and eruptive mechanisms of Masaya caldera complex. PhD thesis, Dartmouth College, Hanover, N.H.

  • Wongdontri-Stuper W, Jayanty RKM, Simonaitis R, Heicklen J (1979) The Cl2 photosensitized decomposition of O3: The reactions of ClO and OClO with O3. J Photochem 10:163

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks to Wilfried Strauch and Manuel Alfaro from INETER as well as the park rangers at the Parque Nacional Volcan Masaya for their patient and diligent support during the measurements. The authors would also like to thank Andrew McGonigle and one anonymous reviewer as well as editor Pierre Delmelle for their many helpful comments in preparing this manuscript. We also gratefully acknowledge the NOVAC project for providing data and funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christoph Kern or Ulrich Platt.

Additional information

Editorial responsibility: P. Delmelle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kern, C., Sihler, H., Vogel, L. et al. Halogen oxide measurements at Masaya Volcano, Nicaragua using active long path differential optical absorption spectroscopy. Bull Volcanol 71, 659–670 (2009). https://doi.org/10.1007/s00445-008-0252-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-008-0252-8

Keywords

Navigation