Abstract
Stimulus-specific adaptation (SSA) is the reduction in the response to a common stimulus that does not generalize, or only partially generalizes, to other, rare stimuli. SSA has been proposed to be a correlate of ‘deviance detection’, an important computational task of sensory systems. SSA is ubiquitous in the auditory system: It is found both in cortex and in subcortical stations, and it has been demonstrated in many mammalian species as well as in birds. A number of models have been suggested in the literature to account for SSA in the auditory domain. In this review, the experimental literature is critically examined in relationship to these models. While current models can all account for auditory SSA to some degree, none is fully compatible with the available findings.
Similar content being viewed by others
References
Anderson LA, Christianson GB, Linden JF (2009) Stimulus-specific adaptation occurs in the auditory thalamus. J Neurosci 29(22):7359–7363. doi:10.1523/JNEUROSCI.0793-09.2009
Antunes FM, Nelken I, Covey E, Malmierca MS (2010) Stimulus-specific adaptation in the auditory thalamus of the anesthetized rat. PLoS ONE 5(11):e14071. doi:10.1371/journal.pone.0014071
Ayala YA, Perez-Gonzalez D, Duque D, Nelken I, Malmierca MS (2012) Frequency discrimination and stimulus deviance in the inferior colliculus and cochlear nucleus. Front Neural Circuits 6:119. doi:10.3389/fncir.2012.00119
Bauerle P, von der Behrens W, Kossl M, Gaese BH (2011) Stimulus-specific adaptation in the gerbil primary auditory thalamus is the result of a fast frequency-specific habituation and is regulated by the corticofugal system. J Neurosci 31(26):9708–9722. doi:10.1523/JNEUROSCI.5814-10.2011
Bendixen A, Prinz W, Horvath J, Trujillo-Barreto NJ, Schroger E (2008) Rapid extraction of auditory feature contingencies. Neuroimage 41(3):1111–1119. doi:10.1016/j.neuroimage.2008.03.040
Bendixen A, Roeber U, Schroger E (2007) Regularity extraction and application in dynamic auditory stimulus sequences. J Cogn Neurosci 19(10):1664–1677. doi:10.1162/jocn.2007.19.10.1664
Bendixen A, Schroger E (2008) Memory trace formation for abstract auditory features and its consequences in different attentional contexts. Biol Psychol 78(3):231–241. doi:10.1016/j.biopsycho.2008.03.005
Corfas G, Dudai Y (1989) Habituation and dishabituation of a cleaning reflex in normal and mutant Drosophila. J Neurosci 9(1):56–62
Duque D, Perez-Gonzalez D, Ayala YA, Palmer AR, Malmierca MS (2012) Topographic distribution, frequency, and intensity dependence of stimulus-specific adaptation in the inferior colliculus of the rat. J Neurosci 32(49):17762–17774. doi:10.1523/JNEUROSCI.3190-12.2012
Edeline JM (2003) The thalamo-cortical auditory receptive fields: regulation by the states of vigilance, learning and the neuromodulatory systems. Exp Brain Res 153(4):554–572
Edeline JM, Pham P, Weinberger NM (1993) Rapid development of learning-induced receptive field plasticity in the auditory cortex. Behav Neurosci 107(4):539–551
Ehret G, Merzenich MM (1985) Auditory midbrain responses parallel spectral integration phenomena. Science 227(4691):1245–1247
Farley BJ, Quirk MC, Doherty JJ, Christian EP (2010) Stimulus-specific adaptation in auditory cortex is an NMDA-independent process distinct from the sensory novelty encoded by the mismatch negativity. J Neurosci 30(49):16475–16484. doi:10.1523/JNEUROSCI.2793-10.2010
Fishman YI, Steinschneider M (2012) Searching for the mismatch negativity in primary auditory cortex of the awake monkey: deviance detection or stimulus specific adaptation? J Neurosci 32(45):15747–15758. doi:10.1523/JNEUROSCI.2835-12.2012
Gordon N, Shackleton TM, Palmer AR, Nelken I (2008) Responses of neurons in the inferior colliculus to binaural disparities: Insights from the use of Fisher information and mutual information. J Neurosci Methods 169(2):391–404
Grimm S, Escera C (2012) Auditory deviance detection revisited: evidence for a hierarchical novelty system. Int J Psychophysiol 85(1):88–92. doi:10.1016/j.ijpsycho.2011.05.012
Grimm S, Escera C, Slabu L, Costa-Faidella J (2011) Electrophysiological evidence for the hierarchical organization of auditory change detection in the human brain. Psychophysiology 48(3):377–384. doi:10.1111/j.1469-8986.2010.01073.x
Gutfreund Y (2012) Stimulus-specific adaptation, habituation and change detection in the gaze control system. Biol Cybern. doi:10.1007/s00422-012-0497-3
Harper NS, McAlpine D (2004) Optimal neural population coding of an auditory spatial cue. Nature 430(7000):682–686
Hershenhoren I, Taaseh N, Nelken I (2012) Intracellular correlates of stimulus-specific adaptation. J Mol Neurosci 48:S53–S53
Jacobsen T, Schroger E, Horenkamp T, Winkler I (2003) Mismatch negativity to pitch change: varied stimulus proportions in controlling effects of neural refractoriness on human auditory event-related brain potentials. Neurosci Lett 344(2):79–82. doi:10.1016/S0304-3940(03)00408-7
Kilgard MP, Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279(5357):1714–1718
Loebel A, Nelken I, Tsodyks M (2007) Processing of sounds by population spikes in a model of primary auditory cortex. Front Neurosci 1(1):197–209. doi:10.3389/neuro.01.1.1.015.2007
Malmierca MS, Cristaudo S, Perez-Gonzalez D, Covey E (2009) Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci 29(17):5483–5493. doi:10.1523/JNEUROSCI.4153-08.2009
Metherate R (2010) Functional connectivity and cholinergic modulation in auditory cortex. Neurosci Biobehav Rev 35(10):2058–2063. doi:10.1016/j.neubiorev.2010.11.010
Mill R, Coath M, Wennekers T, Denham SL (2011a) Abstract stimulus-specific adaptation models. Neural Comput 23(2):435–476. doi:10.1162/NECO_a_00077
Mill R, Coath M, Wennekers T, Denham SL (2011b) A neurocomputational model of stimulus-specific adaptation to oddball and Markov sequences. PLoS Comput Biol 7(8):e1002117. doi:10.1371/journal.pcbi.1002117
Mill R, Coath M, Wennekers T, Denham SL (2012) Characterising stimulus-specific adaptation using a multi-layer field model. Brain Res 1434:178–188. doi:10.1016/j.brainres.2011.08.063
Miller LM, Escabi MA, Read HL, Schreiner CE (2001) Functional convergence of response properties in the auditory thalamocortical system. Neuron 32(1):151–160
Moore BCJ (1993) Frequency analysis and pitch perception. In: Yost WA, Popper AN, Fay RR (eds) Human psychophysics. Springer, New York, pp 56–115
Moshitch D, Las L, Ulanovsky N, Bar-Yosef O, Nelken I (2006) Responses of neurons in primary auditory cortex (A1) to pure tones in the halothane-anesthetized cat. J Neurophysiol 95(6):3756–3769
Movshon JA, Lennie P (1979) Pattern-selective adaptation in visual cortical neurones. Nature 278(5707):850–852
Nelken I, Bar-Yosef O (2008) Neurons and objects: the case of auditory cortex. Front Neurosci 2(1):107–113. doi:10.3389/neuro.01.009.2008
Nelken I, Ulanovsky N (2007) Change detection, mismatch negativity and stimulus-specific adaptation in animal models. J Psychophysiol 21:214–223
Nelken I, Yaron A, Polterovich A, Hershenhoren I (2013) Stimulus-specific adaptation beyond pure tones. Adv Exp Med Biol 787:411–418. doi:10.1007/978-1-4614-1590-9_45
Netser S, Zahar Y, Gutfreund Y (2011) Stimulus-specific adaptation: can it be a neural correlate of behavioral habituation? J Neurosci 31(49):17811–17820. doi:10.1523/JNEUROSCI.4790-11.2011
Patel CR, Redhead C, Cervi AL, Zhang H (2012) Neural sensitivity to novel sounds in the rat’s dorsal cortex of the inferior colliculus as revealed by evoked local field potentials. Hear Res 286(1–2):41–54. doi:10.1016/j.heares.2012.02.007
Perez-Gonzalez D, Hernandez O, Covey E, Malmierca MS (2012) GABA(A)-mediated inhibition modulates stimulus-specific adaptation in the inferior colliculus. PLoS One 7(3):e34297. doi:10.1371/journal.pone.0034297
Reches A, Gutfreund Y (2008) Stimulus-specific adaptations in the gaze control system of the barn owl. J Neurosci 28(6):1523–1533
Reches A, Netser S, Gutfreund Y (2010) Interactions between stimulus-specific adaptation and visual auditory integration in the forebrain of the barn owl. J Neurosci 30(20):6991–6998. doi:10.1523/JNEUROSCI.5723-09.2010
Sanchez-Vives MV, Nowak LG, McCormick DA (2000) Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. J Neurosci 20(11):4267–4285
Scholes C, Palmer AR, Sumner CJ (2011) Forward suppression in the auditory cortex is frequency-specific. Eur J Neurosci 33(7):1240–1251. doi:10.1111/j.1460-9568.2010.07568.x
Slabu L, Escera C, Grimm S, Costa-Faidella J (2010) Early change detection in humans as revealed by auditory brainstem and middle-latency evoked potentials. Eur J Neurosci 32(5):859–865. doi:10.1111/j.1460-9568.2010.07324.x
Taaseh N, Yaron A, Nelken I (2011) Stimulus-specific adaptation and deviance detection in the rat auditory cortex. PLoS ONE 6(8):e23369. doi:10.1371/journal.pone.0023369
Talwar SK, Gerstein GL (1998) Auditory frequency discrimination in the white rat. Hear Res 126(1–2):135–150
Thomas JM, Morse C, Kishline L, O’Brien-Lambert A, Simonton A, Miller KE, Covey E (2012) Stimulus-specific adaptation in specialized neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus. Hear Res 291(1–2):34–40. doi:10.1016/j.heares.2012.06.004
Tsodyks M, Uziel A, Markram H (2000) Synchrony generation in recurrent networks with frequency-dependent synapses. J Neurosci 20(1):RC50
Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24(46):10440–10453
Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6(4):391–398
von der Behrens W, Bauerle P, Kossl M, Gaese BH (2009) Correlating stimulus-specific adaptation of cortical neurons and local field potentials in the awake rat. J Neurosci 29(44):13837–13849. doi:10.1523/JNEUROSCI.3475-09.2009
Wehr M, Zador AM (2005) Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron 47(3):437–445
Westerman LA, Smith RL (1984) Rapid and short-term adaptation in auditory nerve responses. Hear Res 15:249–260
Winkler I, Denham SL, Nelken I (2009) Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends Cogn Sci 13(12):532–540. doi:10.1016/j.tics.2009.09.003
Yarden TS, Nelken I (2012) Stimulus-Specific Adaptation in a model of primary auditory cortex. J Mol Neurosci 48:S126–S126
Yaron A, Hershenhoren I, Nelken I (2012) Sensitivity to complex statistical regularities in rat auditory cortex. Neuron 76(3):603–615. doi:10.1016/j.neuron.2012.08.025
Yu XJ, Xu XX, He S, He J (2009) Change detection by thalamic reticular neurons. Nat Neurosci 12(9):1165–1170. doi:10.1038/nn.2373
Zhao L, Liu Y, Shen L, Feng L, Hong B (2011) Stimulus-specific adaptation and its dynamics in the inferior colliculus of rat. Neuroscience 181:163–174. doi:10.1016/j.neuroscience.2011.01.060
Acknowledgments
This work has been supported by Grants from the Israeli Science Foundation, The US–Israel Binational Science Foundation (BSF), the Israeli Ministry of Science (Collaboration Israel–France), and the Gatsby Charitable Foundation. Flora Antunes helped with the preparation of the figures. Leila Khouri commented on a previous version of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article forms part of a special issue of Biological Cybernetics entitled “Structural Aspects of Biological Cybernetics: Valentino Braitenberg, Neuroanatomy, and Brain Function”.
Rights and permissions
About this article
Cite this article
Nelken, I. Stimulus-specific adaptation and deviance detection in the auditory system: experiments and models. Biol Cybern 108, 655–663 (2014). https://doi.org/10.1007/s00422-014-0585-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00422-014-0585-7