Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Mean field model of acetylcholine mediated dynamics in the cerebral cortex

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A recent continuum model of the large scale electrical activity of the cerebral cortex is generalized to include cholinergic modulation. In this model, dynamic modulation of synaptic strength acts over the time scales of nicotinic and muscarinic receptor action. The cortical model is analyzed to determine the effect of acetylcholine (ACh) on its steady states, linear stability, spectrum, and temporal responses to changes in subcortical input. ACh increases the firing rate in steady states of the system. Changing ACh concentration does not introduce oscillatory behavior into the system, but increases the overall spectral power. Model responses to pulses in subcortical input are affected by the tonic level of ACh concentration, with higher levels of ACh increasing the magnitude firing rate response of excitatory cortical neurons to pulses of subcortical input. Numerical simulations are used to explore the temporal dynamics of the model in response to changes in ACh concentration. Evidence is seen of a transition from a state in which intracortical inputs are emphasized to a state where thalamic afferents have enhanced influence. Perturbations in ACh concentration cause changes in the firing rate of cortical neurons, with rapid responses due to fast acting facilitatory effects of nicotinic receptors on subcortical afferents, and slower responses due to muscarinic suppression of intracortical connections. Together, these numerical simulations demonstrate that the actions of ACh could be a significant factor modulating early components of evoked response potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldewag T, Wong D and Stephan KE (2006). Nicotinic modulation of human auditory sensory memory: Evidence from mismatch negativity potentials. Int J Psychophysiol 59: 49–58

    Article  Google Scholar 

  2. Blokland A (1996). Acetylcholine: a neurotransmitter for learning and memory?. Brain Res Rev 21: 285–300

    Article  Google Scholar 

  3. Clarke P (2004). Nicotinic modulation of thalamocortical neurotransmission. Prog Brain Res 145: 253–260

    PubMed  CAS  Google Scholar 

  4. Coull JT (1998). Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog Neurobiol 55: 343–361

    Article  PubMed  CAS  Google Scholar 

  5. Deisz RA, Fortin G and Zieglgänsberger W (1991). Voltage dependence of ecitatory postsynaptic potentials of rat neocortical neurons. J Neurophysiol 65: 371–382

    PubMed  CAS  Google Scholar 

  6. Dimpfel W (2005). Pharmacological modulation of cholinergic brain activity and its reflection in special EEG frequency ranges from various brain areas in the freely moving rat (Tele-Stereo-EEG). Eur Neuropsychopharmacol 15: 673–682

    Article  PubMed  CAS  Google Scholar 

  7. Dossi RC, Paré D and Steriade M (1991). Short-lasting nicotinic and long-lasting muscarinic depolarizing responses of thalamocortical neurons to stimulation of mesopontine cholinergic nuclei. J Neurophysiol 65(3): 393–406

    Google Scholar 

  8. Freeman WJ (1975). Mass action in the nervous system. Academic, New York

    Google Scholar 

  9. Freo U, Pizzolato G, Dam M, Ori C and Battistin L (2002). A short review of cognitive and functional neuroimaging studies of cholinergic drugs: implications for therapeutic potentials. J Neural Transm 109: 857–870

    Article  PubMed  CAS  Google Scholar 

  10. Gil Z, Connors BW and Amitai Y (1997). Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 19: 679–686

    Article  PubMed  CAS  Google Scholar 

  11. Gioanni Y, Rougeot C, Clarke PBS, Lepouse C, Thierry AM and Vidal C (1999). Nicotinic receptors in the rat prefrontal cortex: increase in glutamate release and facilitation of mediodorsal thalamo-cortical transmission. Eur J Neurosci 11: 18–30

    Article  PubMed  CAS  Google Scholar 

  12. Hammond EJ, Meador KJ, Aung-Din R and Wilder BJ (1987). Cholinergic modulation of human P3 event-related potentials. Neurology 37(2): 346–350

    PubMed  CAS  Google Scholar 

  13. Hasselmo ME and Fehlau BP (2001). Differences in time course of ACh and GABA modulations of excitatory synaptic potentials in slices of rat hippocampus. J Neurophysiol 86: 1792–1802

    PubMed  CAS  Google Scholar 

  14. Hasselmo ME and McGaughy J (2004). High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolodation. Prog Brain Res 145: 207–231

    Article  PubMed  CAS  Google Scholar 

  15. Himmelheber AM, Sarter M and Bruno JP (2000). Increases in cortical acetylcholine release during sustained attention performance in rats. Cogn Brain Res 9: 313–325

    Article  CAS  Google Scholar 

  16. Jirsa VK and Haken H (1996). Field theory of electromagnetic brain activity. Phys Rev Lett 77: 960–963

    Article  PubMed  CAS  Google Scholar 

  17. Kandel ER, Schwartz JH, Jessell TM (eds) (1991). Principles of neural science, 3rd edn. Prentice-Hall, London

    Google Scholar 

  18. Kimura F (2000). Cholinergic modulation of cortical function: a hypothetical role in shifting the dynamics in cortical network. Neurosci Res 38: 19–26

    Article  PubMed  CAS  Google Scholar 

  19. Koch C, Rapp M and Segev I (1996). A brief history of time (constants). Cerebral Cortex 6: 93–101

    Article  PubMed  CAS  Google Scholar 

  20. Krnjević K (1963). Acetylcholine-sensitive cells in the cerebral cortex. J Physiol Lond 166: 296–327

    PubMed  Google Scholar 

  21. Krnjević K, Pumain R and Renaud L (1971). Mechanism of excitation by acetylcholine in cerebral cortex. J Physiol Lond 215: 247–268

    PubMed  Google Scholar 

  22. Liley DT and Wright JJ (1994). Intracortical connectivity of pyramidal and stellate cells: estimates of synaptic densities and coupling symmetry. Network: Comput Neural Syst 5: 175–189

    Article  Google Scholar 

  23. Lopesda Silva FH, Hoeks A, Smits H and Zetterberg LH (1974). Model of brain rhythmic activity. the alpha-rhythm of the thalamus. Kybernetik 15: 27–37

    Article  CAS  Google Scholar 

  24. McCormick DA (1992). Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 39: 337–388

    Article  PubMed  CAS  Google Scholar 

  25. McCormick DA and Prince DA (1986). Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex invitro. J Physiol Lond 375: 169–194

    PubMed  CAS  Google Scholar 

  26. Mesulam MM (2004). The cholinergic innervation of the human cerebral cortex. Prog Brain Res 145: 67–78

    PubMed  Google Scholar 

  27. Metherate R (2004). Nicotinic acetylcholine receptors in sensory cortex. Learn Mem 11(1): 50–59

    Article  PubMed  Google Scholar 

  28. Nunez PL (1974). The brain wave equation: a model for the EEG. Math Biosci 21: 279–297

    Article  Google Scholar 

  29. Nunez PL (1981). Electric fields of the brain: the neurophysics of EEG. Oxford University Press, New York

    Google Scholar 

  30. Nunez PL (1995). Neocortical dynamics and human EEG rhythms. Oxford University Press, New York

    Google Scholar 

  31. Oddo S and LaFerla F (2006). The role of nicotinic acetylcholine receptors in Alzheimer’s disease. J Physiol Paris 99: 172–179

    Article  PubMed  CAS  Google Scholar 

  32. Parasurman R (1980). Effects of information processing demands on slow negative shift latencies and N100 amplitude in selective and divided attention. Biol Psychol 11: 217–233

    Article  Google Scholar 

  33. Pekkonen E, Jääskeläinen IP, Kaakkola S and Ahveninen J (2005). Cholinergic modulation of preattentive auditory processing in aging. Neuroimage 27: 387–392

    Article  PubMed  Google Scholar 

  34. Rennie CJ, Robinson PA and Wright JJ (1999). Effects of local feedback on dispersion of electrical waves in the cerebral cortex. Phys Rev E 59(3): 3320–3329

    Article  CAS  Google Scholar 

  35. Rennie CJ, Wright JJ and Robinson PA (2000). Mechanisms of cortical electrical activity and emergence of gamma rhythm. J Theor Biol 205: 17–35

    Article  PubMed  CAS  Google Scholar 

  36. Rennie CJ, Robinson PA and Wright JJ (2002). Unified neurophysical model of EEG spectra and evoked potentials. Biol Cybern 86: 457–471

    Article  PubMed  CAS  Google Scholar 

  37. Rezvani AH and Levin ED (2001). Cognitive effects of nicotine. Biol Psychol 49(3): 258–267

    Article  CAS  Google Scholar 

  38. Robinson PA, Rennie CJ and Wright JJ (1997). Propagation and stability of waves of electrical activity in the cerebral cortex. Phys Rev E 56(1): 826–840

    Article  CAS  Google Scholar 

  39. Robinson PA, Rennie CJ, Wright JJ and Bourke P (1998a). Steady states and global dynamics of electrical activity in the cerebral cortex. Phys Rev E 58(3): 3557–3571

    Article  CAS  Google Scholar 

  40. Robinson PA, Wright JJ and Rennie CJ (1998b). Synchronous oscillations in the cerebral cortex. Phys Rev E 57(4): 4578–4588

    Article  CAS  Google Scholar 

  41. Robinson PA, Rennie CJ, Rowe DL (2002) Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E 65(4):041,924, 1–9

    Google Scholar 

  42. Robinson PA, Rennie CJ, Rowe DL and O’Connor SC (2004). Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Hum Brain Mapp 23: 53–72

    Article  PubMed  CAS  Google Scholar 

  43. Sarter M, Hasselmo ME, Bruno JP and Givens B (2005). Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal driven and cognitive modulation of signal detection. Brain Res Rev 48: 98–111

    Article  PubMed  CAS  Google Scholar 

  44. Spehlmann R (1963). Acetylcholine and prostigmine electrophoreses in visual cortex neurons. J Neurophysiol 26(1): 127–139

    PubMed  CAS  Google Scholar 

  45. Thomson AM (1997). Activity-dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro. J Physiol Lond 502.1: 131–147

    Article  Google Scholar 

  46. Thomson AM, West DC, Hahn J and Deuchars J (1996). Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat cortex. J Physiol Lond 496.1: 81–102

    Google Scholar 

  47. Wilson HR and Cowan JD (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13: 55–80

    Article  PubMed  CAS  Google Scholar 

  48. Yu AJ and Dayan P (2002). Acetylcholine in cortical inference. Neural Netw 15: 719–730

    Article  PubMed  Google Scholar 

  49. Yu A and Dayan P (2005). Uncertainty, neuromodulation and attention. Neuron 46(4): 681–692

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Clearwater.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clearwater, J.M., Rennie, C.J. & Robinson, P.A. Mean field model of acetylcholine mediated dynamics in the cerebral cortex. Biol Cybern 97, 449–460 (2007). https://doi.org/10.1007/s00422-007-0186-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0186-9

Keywords

Navigation