Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Oscillating neurons in the cochlear nucleus: II. Simulation results

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A computer model of sustained chopper neurons in the ventral cochlear nucleus is presented and investigated. In the companion paper, the underlying neurophysiological and neuroanatomical data are demonstrated. To explain the preference of chopper neurons for oscillations with periods which are multiples of a 0.4 ms synaptic delay, we suggest a model of circularly connected chopper neurons. In order to simulate chopper neurons within a physiological dynamic range for periodicity encoding, it is necessary to assume that they receive an input from onset neurons. Our computer analysis of the resulting simple neuronal network shows that it can produce stable oscillations. The chopping can be triggered by an amplitude-modulated signal (AM). The dynamic range and the synchronous response of the simulated chopper neurons to AM are enhanced significantly by an additional input from onset neurons. Physiological properties of chopper neurons in the cat, such as mean, standard deviation, and coefficient of variation of the interspike interval are matched precisely by our simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CN:

Cochlear nucleus

AVCN:

Anterior ventral cochlear nucleus

PVCN:

Posterior ventral cochlear nucleus

DCN:

Dorsal cochlear nucleus

IC:

Inferior colliculus

AN(F):

Auditory nerve (fibre)

AM:

Amplitude-modulated signal

SAM:

Sinusoidal amplitude-modulated sine wave

CF:

Characteristic frequency

CV:

Coefficient of variation

SPL:

Sound pressure level

PSTH:

Poststimulus time histogram

PSP:

Postsynaptic potential

PSC:

Postsynaptic current

EPSP:

Excitatory postsynaptic potentials

AP:

Action potential

ISI:

Interspike interval

VS:

Vector strength

References

  • Arle JC, Kim DO (1991) Neural modeling of intrinsic and spike-discharge properties of cochlear nucleus neurons. Biol Cybern 64:273–283

    Article  PubMed  CAS  Google Scholar 

  • Banks MI, Sachs M (1991) Regularity analysis in a compartment model of chopper units in the anteroventral cochlear nucleus. J Neurophysiol 65:606–629

    PubMed  CAS  Google Scholar 

  • Batra R, Kuwada S, Standford TR (1989) Temporal coding of envelopes and their interaural delays in the inferior colliculus of the unanesthetized rabbit. J Neurophysiol 61:257–268

    PubMed  CAS  Google Scholar 

  • Beutner D, Voets T, Neher E, Moser T (2001) Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29:681–690

    Article  PubMed  CAS  Google Scholar 

  • Blackburn C, Sachs M (1989) Classification of unit types in the anteroventral cochlear nucleus: PST histograms and regularity analysis. J Neurophysiol 62:1303–1329

    PubMed  CAS  Google Scholar 

  • Bleeck S (2000) Holistische Signalverarbeitung in einem Modell latenzverknüpfter Neuronen. PhD thesis, TU Darmstadt

  • Bourk TR (1976) Electrical responses of neuronal units in the anteroventral cochlear nucleus of the cat. PhD thesis, MIT

  • Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J Acoust Soc Am 93:401–417

    Article  PubMed  CAS  Google Scholar 

  • Caspary DM, Backoff PM, Finlayson PG, Palombi PS (1994) Inhibitory inputs modulate discharge rate within frequency receptive fields of anteroventral cochlear nucleus neurons. J~Neurophysiol 72:2124–2133

    PubMed  CAS  Google Scholar 

  • Ferragamo M, Golding N, Oertel D (1998) Synaptic inputs to stellate cells in the ventral chochlear nucleus. J Neurophysiol 79:51–63

    PubMed  CAS  Google Scholar 

  • Frisina RD, Smith RL, Chamberlain SC (1985) Differential encoding of rapid changes in sound amplitude by second order auditory neurons. Exp Brain Res 60:417–422

    Article  PubMed  CAS  Google Scholar 

  • Frisina RD, Smith RL, Chamberlain SC (1990a) Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement. Hear Res 44:99–122

    Article  CAS  Google Scholar 

  • Frisina RD, Smith RL, Chamberlain SC (1990b) Encoding of amplitude modulation in the gerbil cochlear nucleus: II. Possible neural mechanisms. Hear Res 44:123–142

    CAS  Google Scholar 

  • Golding NL, Ferragamo M, Oertel D (1999) Role of intrinsic conductances underlying responses to transients in octopus cells of the cochlear nucleus. J Neurosci 19:2897–2905

    PubMed  CAS  Google Scholar 

  • Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605

    Article  PubMed  CAS  Google Scholar 

  • Heil P, Schulze H, Langner G (1995) Ontogenetic development of periodicity coding in the inferior colliculus of the mongolian gerbil. Audit Neurosci 1:363–383

    Google Scholar 

  • Hewitt MJ, Meddis R, Shakleton TM (1992) A computer model of a cochlear-nucleus stellate cell: responses to amplitude-modulated and pure-tone stimuli. J Acoust Soc Am 91:2096–2109

    Article  PubMed  CAS  Google Scholar 

  • Langner G (1981) Neuronal mechanisms for pitch analysis in the time domain. Exp Brain Res 44:450–454

    Article  PubMed  CAS  Google Scholar 

  • Langner G (1983) Evidence for neuronal periodicity detection in the auditory system of the guinea fowl: implications for pitch analysis in the time domain. Exp Brain Res 52:333–355

    Article  PubMed  CAS  Google Scholar 

  • Langner G (1992) Periodicity coding in the auditory system. Hear Res 60:115–142

    Article  PubMed  CAS  Google Scholar 

  • Langner G, Schreiner C (1988) Periodicity coding in the inferior colliculus of the cat: I. Neuronal mechanisms. J Neurophysiol 60:1799–1822

    CAS  Google Scholar 

  • Moser T, Beutner D (2000) Kinectics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. PNAS 97:11883–11888

    Article  Google Scholar 

  • Mountain DC, Cody AR (1999) Multiple modes of inner hair cell stimulation. Hear Res 132:1–14

    Article  PubMed  CAS  Google Scholar 

  • Müller-Preuss P, Flachskamm C, Bieser A (1994) Neural encoding of amplitude modulation within the auditory midbrain of squirrel monkeys. Hear Res 80:197–208

    Article  PubMed  Google Scholar 

  • Oertel D, Bal R, Gardner SM, Smith PH, Joris PX (2000) Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus. PNAS 97:11773–11779

    Article  PubMed  CAS  Google Scholar 

  • Palmer A, Jiang D, Marshall DH (1996) Responses of ventral cochlear nucleus onset and chopper units as a function of signal bandwidth. J Neurophysiol 75:780–794

    PubMed  CAS  Google Scholar 

  • Rall W (1967) Distinguishing theoretical synaptic potentials computed for different somadendritic distributions of synaptic inputs. J Neurophysiol 30:1138–1168

    PubMed  CAS  Google Scholar 

  • Rees A, Langner G (2005)Temporal coding in the auditory midbrain. In: The inferior colliculus, Springer, Berlin Heidelberg New york, pp 346–376

  • Rothman J, Manis P (2003) The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons. J Neurophysiol 89:3097–3113

    Article  PubMed  CAS  Google Scholar 

  • Strube HW (1985) A computationally efficient basilar-membrane model. Acustica 58:207–214

    Google Scholar 

  • Wiegrebe L, Meddis R (2004) The representation of periodic sounds in simulated sustained chopper units of the ventral cochlear nucleus. J Acoust Soc Am 115:1207–1218

    Article  PubMed  Google Scholar 

  • Zwicker E (1986) A hardware cochlear nonlinear preprocessing model with active feedback. J Acoust Soc Am 80:146–153

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bahmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahmer, A., Langner, G. Oscillating neurons in the cochlear nucleus: II. Simulation results. Biol Cybern 95, 381–392 (2006). https://doi.org/10.1007/s00422-006-0091-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0091-7

Keywords

Navigation