Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A novel space–time generalized FDM for dynamic coupled thermoelasticity problems in heterogeneous plates

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A novel space–time generalized finite difference method based on the direct space–time discretization technique is developed for solving dynamic coupled thermoelasticity problems. By considering the time scale as an additional space dimension, the spatial and temporal domains are simultaneously discretized. In our numerical implementation, the velocity is introduced as an additional unknown field quantity for dealing with the inertia item appearing in elastodynamic equations. Some dynamic coupled thermoelasticity problems in homogeneous or heterogeneous plates under different loading cases are numerically analyzed by this method. The accuracy of the present method is verified by comparison with analytical solutions or other numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MathSciNet  Google Scholar 

  2. Danilovskaya, V.I.: On a dynamical problem of thermoelasticity. Prikl. Mat. Mekh. 16, 341–344 (1952)

    MathSciNet  Google Scholar 

  3. Danilovskaya, V.I.: Thermal stresses in an elastic half-plane arising from a sudden heating of its boundary. Akad. Nauk SSSR. Prikl. Mat. Meh. 14, 316–318 (1950) (in Russian)

    MathSciNet  Google Scholar 

  4. Boley, B.A., Tolins, I.S.: Transient coupled thermoelastic boundary value problems in the half-space. J. Appl. Mech. Trans. ASME 29, 637–646 (1962)

    Article  MathSciNet  Google Scholar 

  5. Filopoulos, S.P., Papathanassiou, T.K., Tsamasphyros, G.J.: A finite element model for calculating the stresses in bars with microstructure loaded by ultra-short laser pulses. J. Therm. Stresses 32, 905–922 (2009)

    Article  Google Scholar 

  6. Sladek, J., Sladek, V., Wünsche, M., Tan, C.: Crack analysis of size-dependent piezoelectric solids under a thermal load. Eng. Fract. Mech. 182, 187–201 (2017)

    Article  Google Scholar 

  7. Sladek, J., Sladek, V., Repka, M., Tan, C.: Crack analysis of solids with gradient thermo-piezoelectricity. Theor. Appl. Fract. Mech. 103, 102267 (2019)

    Article  Google Scholar 

  8. Prevost, J.H., Tao, D.: Finite element analysis of dynamic coupled thermoelasticity problems with relaxation times. J. Appl. Mech. Trans. ASME 50, 817–822 (1983)

    Article  Google Scholar 

  9. Carter, J.P., Booker, J.R.: Finite element analysis of coupled thermoelasticity. Comput. Struct. 31, 73–80 (1989)

    Article  Google Scholar 

  10. Eslami, M.R., Shakeri, M., Sedaghati, R.: Coupled thermoelasticity of an axially symmetric cylindrical shell. J. Therm. Stresses 17, 115–135 (1994)

    Article  Google Scholar 

  11. Giannakeas, I.N., Papathanasiou, T.K., Bahai, H.: Simulation of thermal shock cracking in ceramics using bond-based peridynamics and FEM. J. Eur. Ceram. Soc. 38, 3037–3048 (2018)

    Article  Google Scholar 

  12. Rizzo, F.J., Shippy, D.J.: An advanced boundary integral equation thermoelasticity method for three-dimensional. Int. J. Numer. Methods Eng. 11, 1753–1768 (1977)

    Article  Google Scholar 

  13. Cruse, T.A., Snow, D.W., Wilson, R.B.: Numerical solutions in axisymmetric elasticity. Comput. Struct. 7, 445–451 (1977)

    Article  MathSciNet  Google Scholar 

  14. Liu, Y.J., Li, Y.X., Huang, S.: A fast multipole boundary element method for solving two-dimensional thermoelasticity problems. Comput. Mech. 54, 821–831 (2014)

    Article  MathSciNet  Google Scholar 

  15. Abreu, A.I., Canelas, A., Sensale, B., Mansur, W.J.: CQM-based BEM formulation for uncoupled transient quasistatic thermoelasticity analysis. Eng. Anal. Bound. Elem. 36, 568–578 (2012)

    Article  MathSciNet  Google Scholar 

  16. Leitner, M., Schanz, M.: Generalized convolution quadrature based boundary element method for uncoupled thermoelasticity. Mech. Syst. Signal Process. 150, 107234 (2021)

    Article  Google Scholar 

  17. Tanaka, M., Matsumoto, T., Moradi, M.: Application of boundary element method to 3-D problems of coupled thermoelasticity. Eng. Anal. Bound. Elem. 16, 297–303 (1995)

    Article  Google Scholar 

  18. Hosseini-Tehrani, P., Eslami, M.R.: BEM analysis of thermal and mechanical shock in a two-dimensional finite domain considering coupled thermoelasticity. Eng. Anal. Bound. Elem. 24, 249–257 (2000)

    Article  Google Scholar 

  19. Liu, Q.G., Šarler, B.: A non-singular method of fundamental solutions for two-dimensional steady-state isotropic thermoelasticity problems. Eng. Anal. Bound. Elem. 75, 89–102 (2017)

    Article  MathSciNet  Google Scholar 

  20. Zheng, B., Gao, X., Yang, K., Zhang, C.: A novel meshless local Petrov-Galerkin method for dynamic coupled thermoelasticity analysis under thermal and mechanical shock loading. Eng. Anal. Bound. Elem. 60, 154–161 (2015)

    Article  MathSciNet  Google Scholar 

  21. Sladek, J., Sladek, V., Atluri, S.N.: A pure contour formulation for the meshless local boundary integral equation method in thermoelasticity. CMES-Comput. Model. Eng. 2, 423–433 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Hosseini, S.M., Ghadiri Rad, M.H.: Application of meshless local integral equations for two-dimensional transient coupled hygrothermoelasticity analysis: moisture and thermoelastic wave propagations under shock loading. J. Therm. Stresses 40, 40–54 (2017)

    Article  Google Scholar 

  23. Hosseini, S.M., Sladek, J., Sladek, V.: Meshless local Petrov–Galerkin method for coupled thermoelasticity analysis of a functionally graded thick hollow cylinder. Eng. Anal. Bound. Elem. 35, 827–835 (2011)

    Article  MathSciNet  Google Scholar 

  24. Hosseini, S.M., Sladek, J., Sladek, V.: Two dimensional transient analysis of coupled non-Fick diffusion-thermoelasticity based on Green–Naghdi theory using the meshless local Petrov-Galerkin (MLPG) method. Int. J. Mech. Sci. 82, 74–80 (2014)

    Article  Google Scholar 

  25. Gu, Y., Qu, W., Chen, W., Song, L., Zhang, C.: The generalized finite difference method for long-time dynamic modeling of three-dimensional coupled thermoelasticity problems. J. Comput. Phys. 384, 42–59 (2019)

    Article  MathSciNet  Google Scholar 

  26. Hu, W., Gu, Y., Zhang, C., He, X.: The generalized finite difference method for an inverse boundary value problem in three-dimensional thermo-elasticity. Adv. Eng. Softw. 131, 1–11 (2019)

    Article  Google Scholar 

  27. Hulbert, G.M., Hughes, T.J.R.: Space-time finite element methods for second-order hyperbolic equations. Comput. Methods Appl. Mech. 84, 327–348 (1990)

    Article  MathSciNet  Google Scholar 

  28. Nickell, R.E., Sackman, J.L.: Approximate solutions in linear, coupled thermoelasticity. J. Appl. Mech. Trans. ASME 35, 255–266 (1968)

    Article  Google Scholar 

  29. Lei, J., Wang, Q., Liu, X., Gu, Y., Fan, C.: A novel space-time generalized FDM for transient heat conduction problems. Eng. Anal. Bound. Elem. 119, 1–12 (2020)

    Article  MathSciNet  Google Scholar 

  30. Benito, J.J., Ureña, F., Gavete, L.: Solving parabolic and hyperbolic equations by the generalized finite difference method. J. Comput. Appl. Math. 209, 208–233 (2007)

    Article  MathSciNet  Google Scholar 

  31. Cannarozzi, A.A., Ubertini, F.: A mixed variational method for linear coupled thermoelastic analysis. Int. J. Solids Struct. 38, 717–739 (2001)

    Article  Google Scholar 

  32. Jacquemin, T., Tomar, S., Agathos, K., Mohseni-Mofidi, S., Bordas, S.: Taylor-series expansion based numerical methods: a primer, performance benchmarking and new approaches for problems with non-smooth solutions. Arch. Comput. Methods Eng. 27, 1465–1513 (2019)

    Article  MathSciNet  Google Scholar 

  33. Benito, J.J., Urena, F., Gavete, L.: Influence of several factors in the generalized finite difference method. Appl. Math. Model. 25(12), 1039–1053 (2001)

    Article  Google Scholar 

  34. Benito, J.J., Urena, F., Gavete, L., Alvarez, R.: An h-adaptive method in the generalized finite differences. Comput. Methods Appl. Mech. Eng. 192(5–6), 735–759 (2003)

    Article  Google Scholar 

  35. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Clarendon, Oxford (1959)

    MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (No. 11972054) and the Natural Science Foundation of Shandong Province of China (ZR2017JL004), which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Lei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Wei, X., Wang, Q. et al. A novel space–time generalized FDM for dynamic coupled thermoelasticity problems in heterogeneous plates. Arch Appl Mech 92, 287–307 (2022). https://doi.org/10.1007/s00419-021-02056-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02056-3

Keywords

Navigation