Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Hybrid magnetorheological suspension: effects of magnetic field on the relative dielectric permittivity and viscosity

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We present the fabrication process of a new class of hybrid magnetorheological suspensions (hMRS) based on cotton fabrics impregnated with silicone oil and carbonyl iron microparticles. A plane capacitor is manufactured having as dielectric material the obtained hMRS. We present an experimental setup used to measure the electrical capacitance of the capacitor in a transversal magnetic field. From the recorded data, we show that the capacitance and the relative dielectric permittivities are sensibly influenced by the magnetic field intensity. Also, we show that the viscosity of hMRS increase with time in the presence of a magnetic field. We develop a model which explains qualitatively the observed effects. The obtained results could be used for manufacturing of textile sensors for industrial and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bica I, Liu YD, Choi HJ (2013) Physical characteristics of magnetorheological suspensions and their applications. J Ind Eng Chem 19:394–406

    Article  CAS  Google Scholar 

  2. Dong YZ, Piao SH, Zhang K, Choi HJ (2018) Effect of CoFe 2 O 4 nanoparticles on a carbonyl iron based magnetorheological suspension. Colloids Surfaces A 537:102–108

    Article  CAS  Google Scholar 

  3. Ahmadian M (2017) Magneto-rheological suspensions for improving ground vehicle’s ride comfort, stability, and handling. Veh Syst Dyn 55:1618–1642

    Article  Google Scholar 

  4. Yang X, Huang Y, Hou Y, Wu H, Xu R, Chu PK (2017) Electronics. J. Mater. Sci.: Mater 28:130

    Google Scholar 

  5. Yu J, Dong X, Zhang Z (2017) A novel model of magnetorheological damper with hysteresis division. Smart Mater Struct 26:105042

    Article  Google Scholar 

  6. Cvek M, Mrlik M, Moucka R, Sedlacik M (2018) A systematical study of the overall influence of carbon allotrope additives on performance, stability and redispersibility of magnetorheological fluids. Colloids Surfaces A 543:83–92

    Article  CAS  Google Scholar 

  7. Ruiz-López JA, Wang ZW, Hidalgo-Álvarez R, de Vicente J (2017) Simulations of model magnetorheological fluids in squeeze flow mode. J Rheol 61:871–881

    Article  CAS  Google Scholar 

  8. Bica I, Anitas EM, Chirigiu L, Bunoiu M, Juganaru I, Tatu RF (2015) Magnetodielectric effects in hybrid magnetorheological suspensions. J Ind Eng Chem 22:53–62

    Article  CAS  Google Scholar 

  9. Choi HJ, Kwon TM, Jhon MS (2000). J Mat Sci 35:889–894

    Article  CAS  Google Scholar 

  10. Zhang Y, Zhang F, Huang D, Di C, Zhu D (2015) Sensitive flexible magnetic sensors using organic transistors with magnetic-functionalized suspended gate electrodes. Adv Mat 27:7979–7985

    Article  CAS  Google Scholar 

  11. Melzer M, Kaltenbrunner M, Makarov D, Karnashenko D, Karnashenko D, Sekitani T, Someya T, Schmidt OG (2015) Imperceptible magnetoelectronics. Nat Commun 6:6080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lau S, Petkovic B, Haueisen J (2016) Optimal Magnetic Sensor Vests for Cardiac Source Imaging. Sensors 16:754

    Article  Google Scholar 

  13. Koydemir HC, Ozcan A (2018). Ann Rev Anal Chem 11:6.1

    Article  CAS  Google Scholar 

  14. Armstrong DG, Najafi B, Shahinpoor M (2017) Potential applications of smart multifunctional wearable materials to gerontology. Gerontology 63:287–298

    Article  PubMed  Google Scholar 

  15. S. Melle, Study of the dynamics in magnetorheological suspensions subject to external fields by means of optical techniques, PhD Thesis, University of Madrid, Madrid (1995)

  16. Bica I, Balasoiu M, Bunoiu M, Iordaconiu L (2016). Rom J Phys 61:926

    Google Scholar 

  17. Bica I, Anitas EM, Ind J (2018) Eng. Chem. In Press 64:276–283. https://doi.org/10.1016/j.jiec.2018.03.025

    Article  CAS  Google Scholar 

  18. J. Floarea, T. Petrovici, D. Robescu and D. Stamatoiu, Dynamics of polyphasic fluids and their technical applications (rom.), Editura Tehnica, Bucharest, Romania (1987)

  19. Varela-Jiménez MI, Vargas Luna JL, Cortés-Ramírez JA, Song G (2015) Constitutive model for shear yield stress of magnetorheological fluid based on the concept of state transition. Smart Mater Struct 24:045039

    Article  Google Scholar 

  20. Cao MS, Wang XX, Cao WQ, Yuan J (2015) Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J Mater Chem C 3:6589–6599

    Article  CAS  Google Scholar 

  21. Wu W, Zhang H, Ma H, Cao J, Jiang L, Chen G (2017). J Engineered Fibers Fabrics 12:1

    Google Scholar 

  22. Li WP, Zhu LQ, Gu J, Liu HC (2011). Compos Part B 42:626–630

    Article  CAS  Google Scholar 

  23. Simayee M, Montazer M (2016). J Ind Text 47:674

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Anitas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bica, I., Anitas, E.M., Chirigiu, L. et al. Hybrid magnetorheological suspension: effects of magnetic field on the relative dielectric permittivity and viscosity. Colloid Polym Sci 296, 1373–1378 (2018). https://doi.org/10.1007/s00396-018-4356-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4356-1

Keywords

Navigation