Abstract
Six Earth system models of intermediate complexity that are able to simulate interaction between atmosphere, ocean, and land surface, were forced with a scenario of land cover changes during the last millennium. In response to historical deforestation of about 18 million sq km, the models simulate a decrease in global mean annual temperature in the range of 0.13–0.25°C. The rate of this cooling accelerated during the 19th century, reached a maximum in the first half of the 20th century, and declined at the end of the 20th century. This trend is explained by temporal and spatial dynamics of land cover changes, as the effect of deforestation on temperature is less pronounced for tropical than for temperate regions, and reforestation in the northern temperate areas during the second part of the 20th century partly offset the cooling trend. In most of the models, land cover changes lead to a decline in annual land evapotranspiration, while seasonal changes are rather equivocal because of spatial shifts in convergence zones. In the future, reforestation might be chosen as an option for the enhancement of terrestrial carbon sequestration. Our study indicates that biogeophysical mechanisms need to be accounted for in the assessment of land management options for climate change mitigation.
Similar content being viewed by others
References
Alcamo J, Leemans R, Kreileman EE (1998) Global change scenarios in the 21st century: results from the IMAGE 2.1 model, vol. Elseviers Science, London
Bauer E, Claussen M, Brovkin V, Huenerbein A (2003) Assessing climate forcings of the Earth system for the past millennium. Geophys Res Lett 30:1276. DOI 10.1029/2002GL016639
Bertrand C, Loutre MF, Crucifix M, Berger A (2002) Climate of the last millennium: a sensitivity study. Tellus A Dyn Meteorol Oceanogr 54:221–244
Betts RA (2000) Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408:187–190
Betts RA (2001) Biogeophysical impacts of land use on present-day climate: near-surface temperature change and radiative forcing. Atmos Sci Lett 2:39–51. DOI 10.1006/asle.2001.0023
Bonan GB (1999) Frost followed the plow: Impacts of deforestation on the climate of the United States. Ecol Appl 9:1305–1315
Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718
Brovkin V, Ganopolski A, Claussen M, Kubatzki C, Petoukhov V (1999) Modelling climate response to historical land cover change. Glob Ecol Biogeogr 8:509–517
Brovkin V, Ganopolski A, Svirezhev Y (1997) A continuous climate-vegetation classification for use in climate-biosphere studies. Ecol Model 101:251–261
Brovkin V, Sitch S, von Bloh W, Claussen M, Bauer E, Cramer W (2004) Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years. Global Change Biol 10:1253–1266
Chase TN, Pielke RA, Kittel TGF, Nemani RR, Running SW (2000) Simulated impacts of historical land cover changes on global climate in northern winter. Clim Dyn 16:93–105
Claussen M, Brovkin V, Ganopolski A (2001) Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophys Res Lett 28:1011–1014
Claussen M, Mysak LA, Weaver AJ, Crucifix M, Fichefet T, Loutre MF, Weber SL, Alcamo J, Alexeev VA, Berger A, Calov R, Ganopolski A, Goosse H, Lohmann G, Lunkeit F, Mokhov II, Petoukhov V, Stone P, Wang Z (2002) Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim Dyn 18:579–586
Colman R (2003) A comparison of climate feedbacks in general circulation models. Clim Dyn 20:865–873
Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277
Crucifix M, Loutre MF, Tulkens P, Fichefet T, Berger A (2002) Climate evolution during the Holocene: a study with an Earth system model of intermediate complexity. Clim Dyn 19:43–60
DeFries RS, Bounoua L, Collatz GJ (2002) Human modification of the landscape and surface climate in the next fifty years. Global Change Biol 8:438–458
DeFries RS, Townshend JRG (1994) NDVI-derived land-cover classifications at a global-scale. Int J Remote Sens 15:3567–3586
Delire C, Behling P, Coe MT, Foley JA, Jacob R, Kutzbach J, Liu ZY, Vavrus S (2001) Simulated response of the atmosphere-ocean system to deforestation in the Indonesian Archipelago. Geophys Res Lett 28:2081–2084
Feddema J, Oleson K, Bonan G, Mearns L, Washington W, Meehl G, Nychka D (2005) A comparison of a GCM response to historical anthropogenic land cover change and model sensitivity to uncertainty in present-day land cover representations. Clim Dyn 25:581–609. DOI 10.1007/s00382-005-0038-z
Foley JA, Costa MH, Delire C, Ramankutty N, Snyder P (2003) Green surprise? How terrestrial ecosystems could affect earth’s climate. Front Ecol Environ 1:38–44
Gallée H, van Ypersele JP, Fichefet T, Tricot C, Berger A (1991) Simulation of the last glacial cycle by a coupled, sectorially averaged climate-ice sheet model. Part I: the climate model. J Geophys Res 96:13:139–113,161
Ganopolski A, Petoukhov V, Rahmstorf S, Brovkin V, Claussen M, Eliseev A, Kubatzki C (2001) CLIMBER-2: a climate system model of intermediate complexity. Part II: model sensitivity. Clim Dyn 17:735–751
Goosse H, Fichefet T (1999) Importance of ice-ocean interactions for the global ocean circulation: a model study. J Geophys Res 104:23337–23355
Goosse H, Renssen H, Timmermann A, Bradley RS (2005) Internal and forced climate variability during the last millennium: a model-data comparison using ensemble simulations. Quaternary Sci Rev 24:1345–1360
Hansen J, Sato M, Lacis A, Ruedy R, Tegen I, Matthews E (1998) Perspective: climate forcings in the industrial era. Proc Natl Acad Sci 95:12753–12758
Henderson-Sellers A, Dickinson RE, Durbidge TB, Kennedy PJ, McGuffie K, Pitman AJ (1993) Tropical deforestation—modeling local-scale to regional-scale climate change. J Geophys Res Atmos 98:7289–7315
Houghton RA, Hobbie JE, Melillo JM, Moore B, Peterson BJ, Shaver GR, Woodwell GM (1983) Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol Monogr 53:235–262
IPCC (2001) Climate change 2001: The scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson C (eds) Contribution of working Group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
Kabat P, Claussen M, Dirmeyer PA, Gash JHC, de Guenni LB, Meybeck M, Vörösmarty CJ, Hutjes RWA, Lütkemeier S (eds) (2004) Vegetation, water, humans and the climate: A new perspective on an interactive system, Springer, Berlin
Keeling CD, Whorf TP (2005) Atmospheric CO2 records from sites in the SIO air sampling network. In Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennesse, USA
Kleidon A, Fraedrich K, Heimann M (2000) A green planet versus a desert world: estimating the maximum effect of vegetation on the land surface climate. Clim Change 44:471–493
Klein Goldewijk K (2001) Estimating global land use change over the past 300 years: The HYDE database. Global Biogeochem Cycles 15:417–433
Leemans R, Eickhout B, Strengers B, Bouwman L, Schaeffer M (2002) The consequences of uncertainties in land use, climate and vegetation responses on the terrestrial carbon. Sci China 45:126–142
Mann ME, Jones PD (2003) Global surface temperatures over the past two millennia. Geophys Res Lett 30:1820. DOI 10.1029/2003GL017814
Matthews E (1983) Global vegetation and land use: new high-resolution data bases for climate studies. J Clim Appl Meteor 22:474–487
Matthews HD, Weaver AJ, Eby M, Meissner KJ (2003) Radiative forcing of climate by historical land cover change. Geophys Res Lett 30:1055. DOI 10.1029/2002GL016098
Matthews HD, Weaver AJ, Meissner KJ, Gillett NP, Eby M (2004) Natural and anthropogenic climate change: incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Clim Dyn 22:461–479
Myhre G, Myhre A (2003) Uncertainties in radiative forcing due to surface albedo changes caused by land-use changes. J Clim 16:1511–1524
Neftel A, Friedli H, Moor E, Lötscher H, Oeschger H, Siegenthaler U, Stauffer B (1994) Historical CO2 record from the Siple station ice core. In Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennesse, USA
Nemani RR, Running SW, Pielke RA, Chase TN (1996) Global vegetation cover changes from coarse resolution satellite data. J Geophys Res Atmos 101:7157–7162
Opsteegh JD, Haarsma RJ, Selten FM, Kattenberg A (1998) ECBILT: a dynamic alternative to mixed boundary conditions in ocean models. Tellus A Dyn Meteorol Oceanogr 50:348–367
Petoukhov V, Claussen M, Berger A, Crucifix M, Eby M, Eliseev AV, Fichefet T, Ganopolski A, Goosse H, Kamenkovich I, Mokhov I, Montoya M, Mysak LA, Sokolov A, Stone P, Wang Z, Weaver AJ (2005) EMIC Intercomparison Project (EMIP-CO2): Comparative analysis of EMIC simulations of climate, and of equilibrium and transient responses to atmospheric CO2 doubling. Clim Dyn; DOI 10.1007/s00382-00005-00042-00383
Petoukhov V, Ganopolski A, Brovkin V, Claussen M, Eliseev A, Kubatzki C, Rahmstorf S (2000) CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate. Clim Dyn 16:1–17
Pitman AJ, Zhao M (2000) The relative impact of observed change in land cover and carbon dioxide as simulated by a climate model. Geophys Res Lett 27:1267–1270
Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochem Cycles 13:997–1027
Renssen H, Goosse H, Fichefet T (2003) On the non-linear response of the ocean thermohaline circulation to global deforestation. Geophys Res Lett 30:1061. DOI 10.1029/2002GL016155
Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61:261–293
Sitch S, Brovkin V, von Bloh W, van Vuuren D, Eickhout B, Ganopolski A (2005) Impacts of future land cover changes on atmospheric CO2 and climate. Global Biogeochem Cycles 19:GB2013. DOI 10.1029/2004GB002311
Snyder PK, Delire C, Foley JA (2004) Evaluating the influence of different vegetation biomes on the global climate. Clim Dyn 23:279–302
Sokolov AP, Stone PH (1998) A flexible climate model for use in integrated assessments. Clim Dyn 14:291–303
Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499
Weaver AJ, Eby M, Wiebe EC, Bitz CM, Duffy PB, Ewen TL, Fanning AF, Holland MM, MacFadyen A, Matthews HD, Meissner KJ, Saenko O, Schmittner A, Wang HX, Yoshimori M (2001) The UVic earth system climate model: model description, climatology, and applications to past, present and future climates. Atmosphere-Ocean 39:361–428
Wilson MF, Henderson-Sellers A (1985) A global archive of land cover and soils data for use in general circulation climate models. J Clim 5:119–143
Zhang H, Henderson-Sellers A, McGuffie K (2001) The compounding effects of tropical deforestation and greenhouse warming on climate. Clim Change 49:309–338
Zhao M, Pitman AJ (2002) The impact of land cover change and increasing carbon dioxide on the extreme and frequency of maximum temperature and convective precipitation. Geophys Res Lett 29. DOI 10.1029/2001GL013476
Acknowledgements
Part of this research was performed within the Second Multiannual Scientific Support Plan for a Sustainable Development Policy of the Belgian State.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Brovkin, V., Claussen, M., Driesschaert, E. et al. Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Clim Dyn 26, 587–600 (2006). https://doi.org/10.1007/s00382-005-0092-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00382-005-0092-6