Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Ramsey Numbers of Multiple Copies of Graphs in a Component

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

For a graph G, let \(R({\mathcal {C}}(nG))\) denote the least N such that every 2-colouring of the edges of \(K_N\) contains a monochromatic copy of nG in a monochromatic connected subgraph, where nG denotes n vertex disjoint copies of G. Gyárfás and Sárközy (J Graph Theory 83(2):109–119, 2016) showed that \(R({\mathcal {C}}(nK_3))=7n-2\) for \(n \ge 2\). After that, Roberts (Electron J Comb 24(1):8, 2017)showed that \(R({\mathcal {C}}(nK_r))=(r^2-r+1)n-r+1\) for \(r \ge 4\) and \(n \ge R(K_r)\), where \(R(K_r)\) is the Ramsey number of \(K_r\). In this paper, we determine \(R({\mathcal {C}}(nG))\) for all 4-vertex graphs G without isolated vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Benevides, F.S., Łuczak, T., Scott, A., et al.: Monochromatic cycles in 2-coloured graphs. Comb. Prob. Comput. 21(1–2), 57–87 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bucić, M., Letzter, S., Sudakov, B.: 3-Color bipartite Ramsey number of cycles and paths. J. Graph Theory 92(4), 445–459 (2019)

    Article  MathSciNet  Google Scholar 

  3. Burr, S.: On the Ramsey numbers \(r(G, nH)\) and \(r(nG, nH)\) when \(n\) is large. Disc. Math. 65(3), 215–229 (1987)

    Article  MathSciNet  Google Scholar 

  4. Burr, S., Erdős, P., Spencer, J.: Ramsey theorems for multiple copies of graphs. Trans. Am. Math. Soc. 209, 87–99 (1975)

    Article  MathSciNet  Google Scholar 

  5. Chvátal, V., Harary, F.: Generalized Ramsey theory for graphs, II. Small diagonal numbers. Proc. Am. Math. Soc. 32(2), 389–394 (1972)

    Article  MathSciNet  Google Scholar 

  6. Gyárfás, A., Sárközy, G.N.: Ramsey number of a connected triangle matching. J. Graph Theory 83(2), 109–119 (2016)

    Article  MathSciNet  Google Scholar 

  7. Łuczak, T.: \(R(C_n, C_n, C_n) \le (4+o(1))n\). J. Comb. Theory Ser. B 75(2), 174–187 (1999)

    Article  Google Scholar 

  8. Łuczak, T., Rahimi, Z.: On Schelp’s problem for three odd long cycles. J. Comb. Theory Ser. B 143, 1–15 (2020)

    Article  MathSciNet  Google Scholar 

  9. Mizuno, H., Sato, I.: Ramsey numbers for unions of some cycles. Disc. Math. 69(3), 283–294 (1988)

    Article  MathSciNet  Google Scholar 

  10. Radziszowski, S. P.: Small Ramsey numbers. Electron. J. Comb. DSI, 15 (0017)

  11. Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. 2(1), 264–286 (1930)

    Article  MathSciNet  Google Scholar 

  12. Roberts, B.: Ramsey numbers of connected clique matchings. Electron. J. Comb. 24(1), 8 (2017)

    MathSciNet  Google Scholar 

  13. Yong, L.D., Jian, W.Z.: The Ramsey number \(r(mC_4, nC_4)\) (in Chinese). J. Shanghai Tiedao Univ. 20(6), 66–70 (1999)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We are thankful to the reviewers for reading the manuscript carefully and giving very valuable comments to help improve the presentation. This research is supported by National Natural Science foundation of China (Grant Nos. 11931002 and 12371327).

Funding

The research was partially supported by NSFC (Grant Nos. 11931002 and 12371327).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuejian Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported in part by National Natural Science Foundation of China (Nos. 11931002 and 12371327).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Peng, Y. & Zhang, Y. Ramsey Numbers of Multiple Copies of Graphs in a Component. Graphs and Combinatorics 40, 94 (2024). https://doi.org/10.1007/s00373-024-02821-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-024-02821-5

Keywords

Mathematics Subject Classification

Navigation