Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Domino Tilings of Aztec Octagons

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Considerable energy has been devoted to understanding domino tilings: for example, Elkies, Kuperberg, Larsen and Propp proved the Aztec diamond theorem, which states that the number of domino tilings for the Aztec diamond of order n is equal to \(2^{n(n+1)/2}\), and the authors recently counted the number of domino tilings for augmented Aztec rectangles and their chains by using Delannoy paths. In this paper, we count domino tilings for two new shapes of regions, bounded augmented Aztec rectangles and Aztec octagons by constructing a bijection between domino tilings for these regions and the associated generalized Motzkin paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Notes

  1. Remark that they miswrote ‘\(\sin \frac{(i + 1) m \pi }{n + 2} \, \sin \frac{(j + 1) m \pi }{n + 2}\)’ by ‘\(\sin \frac{i m \pi }{n + 2} \, \sin \frac{j m \pi }{n + 2}\)’ in [7].

References

  1. Bona, M.: Handbook of Enumerative Combinatorics. CRC Press, Florida (1999)

    MATH  Google Scholar 

  2. Bosio, F., Leeuwen, M.: A bijective proving the Aztec diamond theorem by combing lattice paths. Electron. J. Comb. 20, 24 (2013)

    Article  MATH  Google Scholar 

  3. Brualdi, R., Kirkland, S.: Aztec diamonds and digraphs, and Hankel determinants of Schröder numbers. J. Comb. Theory Ser. B 94, 334–351 (2005)

    Article  MATH  Google Scholar 

  4. Ciucu, M.: Perfect matchings of cellular garphs. J. Algebr. Comb. 5, 87–103 (1996)

    Article  MATH  Google Scholar 

  5. Eu, S., Fu, T.: A simple proof of the Aztec diamond theorem. Electron. J. Comb. 12, R18 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Elkies, N., Kuperberg, G., Larsen, M., Propp, J.: Alternating-sign matrices and domino tilings (parts I and II). J. Algebr. Comb. 1, 111–132 (1992)

    Article  MATH  Google Scholar 

  7. Felsner, S., Heldt, D.: Lattice path enumeration and Toeplitz matrices. J. Integer Seq. 18, 15.1.3 (2015)

  8. Fendler, M., Grieser, D.: A new simple proof of the Aztec diamond theorem. Graphs Comb. 32, 1389–1395 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gessel, I., Viennot, G.: Binomial determinants, paths, and hook length formulae. Adv. Math. 58, 300–321 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gessel, I., Viennot, G.: Determinants, Paths, and Plane Partitions, a Brandeis University report (1989) http://contscience.xavierviennot.org

  11. Kim, H., Lee, S., Oh, S.: Domino tilings for augmented Aztec rectangles and their chains. Electron. J. Comb. 26, 3.2 (2019)

  12. Lindström, B.: On the vector representations of induced matroids. Bull. Lond. Math. Soc. 5, 85–90 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Merrifield, R., Simmons, H.: Enumeration of structure-sensitive graphical subsets: theory. Proc. Natl. Acad. Sci. U. S. A. 78, 692–695 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Merrifield, R., Simmons, H.: Enumeration of structure-sensitive graphical subsets: calculations. Proc. Natl. Acad. Sci. U. S. A. 78, 1329–1332 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Oh, S.: Domino tilings of the expanded Aztec diamond. Discrete Math. 341, 1885–1191 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Oh, S.: State matrix recursion method and monomer-dimer problem. Discrete Math. 342, 1434–1445 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Propp, J.: Enumeration of matchings: problems and progress. New Perspect. Geometr. Comb. MSRI Publ. 38, 255–290 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Sachs, H., Zernitz, H.: Remark on the dimer problem. Discrete Appl. Math. 51, 171–179 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungsang Oh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2020R1F1A1A01074716). The third author was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (NRF-2022R1F1A1064273).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Lee, S. & Oh, S. Domino Tilings of Aztec Octagons. Graphs and Combinatorics 39, 45 (2023). https://doi.org/10.1007/s00373-023-02645-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-023-02645-9

Keywords

Mathematics Subject Classification

Navigation