Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The Family of Bicircular Matroids Closed Under Duality

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We characterize the 3-connected members of the intersection of the class of bicircular and cobicircular matroids. Aside from some exceptional matroids with rank and corank at most 5, this class consists of just the free swirls and their minors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. This check can be done by hand or by using the SageMath software package. One way to represent the bicircular matroid of a graph G in SageMath is as follows. Define a \(\mathbb Q\)-matrix A whose rows are indexed by V(G) and whose columns are indexed by E(G). The column corresponding to a link e having endpoints in rows i and j should have a \(-1\) in row i, a prime number \(p_e\) unique to e in row j, and zeros in all other rows. The column corresponding to a loop incident to vertex v should be the elementary column vector corresponding to the row for v. Now \(M(A)=B(G)\).

References

  1. Bonin, J., de Mier, A., Noy, M.: Lattice path matroids: enumerative aspects and Tutte polynomials. J. Combin. Theory Ser. A 104(1), 63–94 (2003). (MR 2018421)

    Article  MathSciNet  Google Scholar 

  2. Bonin, J.E., de Mier, A.: Lattice path matroids: structural properties. Eur. J. Combin. 27(5), 701–738 (2006). (MR 2215428)

    Article  MathSciNet  Google Scholar 

  3. Bonin, J.E., Giménez, O.: Multi-path matroids. Combin. Probab. Comput. 16(2), 193–217 (2007). (MR 2298809)

    Article  MathSciNet  Google Scholar 

  4. Brualdi, R.A.: On fundamental transversal matroids. Proc. Am. Math. Soc. 45, 151–156 (1974). (MR 387087)

    Article  MathSciNet  Google Scholar 

  5. Carmesin, J.: Embedding simply connected 2-complexes in 3-space—III. Constraint Minors. (2017)

  6. Carmesin, J.: Embedding simply connected 2-complexes in 3-space—IV. Dual Matroids. (2017)

  7. Carmesin, J.: Embedding simply connected 2-complexes in 3-space—I. a Kuratowski-type Characterisation. (2019)

  8. Carmesin, J.: Embedding simply connected 2-complexes in 3-space—II. Rotation Systems. (2019)

  9. Carmesin, J.: Embedding simply connected 2-complexes in 3-space—V. a refined Kuratowski-type Characterisation. (2019)

  10. Carmesin, J.: A Whitney type theorem for surfaces: characterising graphs with locally planar embeddings. (2020)

  11. Cunningham, W.H., Edmonds, J.: A combinatorial decomposition theory. Can. J. Math. 32(3), 734–765 (1980)

    Article  MathSciNet  Google Scholar 

  12. Las Vergnas, M.: Sur les systèmes de représentants distincts d’une famille d’ensembles. C. R. Acad. Sci. Paris Sér. A-B 270, A501–A503 (1970). (MR 266760)

    MATH  Google Scholar 

  13. Matthews, L.R.: Bicircular matroids. Q. J. Math. Oxf. Ser. (2) 28(110), 213–227 (1977)

    Article  MathSciNet  Google Scholar 

  14. Neudauer, N.: The transversal presentations and graphs of bicircular matroids. Ph.D. thesis, University of Wisconsin - Madison (1998)

  15. Oxley, J.: Matroid Theory, Second Ed., Oxford Graduate Texts in Mathematics, vol. 21. Oxford University Press, Oxford (2011)

    Google Scholar 

  16. Daniel, C.: Slilaty, On cographic matroids and signed-graphic matroids. Discrete Math. 301(2–3), 207–217 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Tutte, W.T.: Connectivity in graphs, in Mathematical Expositions, No. 15, University of Toronto Press, Toronto, (1966)

  18. Wagner, D.K.: Connectivity in bicircular matroids. J. Combin. Theory Ser. B 39(3), 308–324 (1985). (MR 815399)

    Article  MathSciNet  Google Scholar 

  19. Zaslavsky, T.: Biased graphs. II. The three matroids. J. Combin. Theory Ser. B 51(1), 46–72 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaidy Sivaraman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaraman, V., Slilaty, D. The Family of Bicircular Matroids Closed Under Duality. Graphs and Combinatorics 38, 24 (2022). https://doi.org/10.1007/s00373-021-02413-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-021-02413-7

Keywords

Navigation