Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Generalized Turán Number of Even Linear Forests

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The generalized Turán number \(ex(n,K_s,H)\) is defined to be the maximum number of copies of a complete graph \(K_s\) in any H-free graph on n vertices. Let F be an even linear forest, that is, F consists of paths of even order. In this paper, we determine the value of \(ex(n,K_s,F)\), which generalizes or improves some known results on generalized Turán number and classical Turán number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alon, N., Kostochka, A., Shikhelman, C.: Many \(T\) copies in \(H\)-free subgraphs of random graphs. J. Comb. 9, 567–597 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Alon, N., Shikhelman, C.: Many \(T\) copies in \(H\)-free graphs. J. Comb. Theory Ser. B 121, 146–172 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bollobás, B., Győri, E.: Pentagons vs. triangles. Discret. Math. 308, 4332–4336 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bushaw, N., Kettle, N.: Turán numbers of multiple paths and equibipartite forests. Comb. Probab. Comput. 20, 837–853 (2011)

    Article  Google Scholar 

  5. Chase, Z.: A proof of the Gan-Loh-Sudakov conjecture (2019) arXiv:1912.01600

  6. Cutler, J., Radcliffe, A.J.: The maximum number of complete subgraphs of fixed size in a graph with given maximum degree. J. Graph Theory 84, 134–145 (2017)

    Article  MathSciNet  Google Scholar 

  7. Dirac, G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. 2, 69–81 (1952)

    Article  MathSciNet  Google Scholar 

  8. Erdős, P.: On the number of complete subgraphs contained in certain graphs. Magy. Tud. Akad. Mat. Kut. Intéz. Közl. 7, 459–474 (1962)

    MathSciNet  MATH  Google Scholar 

  9. Erdős, P., Gallai, T.: On maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hung. 10, 337–356 (1959)

    Article  MathSciNet  Google Scholar 

  10. Gerbner, D., Győri, E., Methuku, A., Vizer, M.: Generalized Turán problems for even cycles. J. Comb. Theory Ser. B 145, 169–213 (2020)

    Article  Google Scholar 

  11. Gerbner, D., Keszegh, B., Palmer, C., Patkós, B.: On the number of cycles in a graph with restricted cycle lengths. SIAM J. Discret. Math. 32, 266–279 (2018)

    Article  MathSciNet  Google Scholar 

  12. Gerbner, D., Methuku, A., Vizer, M.: Generalized Turán problems for disjoint copies of graphs. Discret. Math. 342, 3130–3141 (2019)

    Article  Google Scholar 

  13. Gerbner, D., Palmer, C.: Counting copies of a fixed subgraph in \(F\)-free graphs. Eur. J. Comb. 82, 103001 (2019). (15 pages)

    Article  MathSciNet  Google Scholar 

  14. Grzesik, A.: On the maximum number of five-cycles in a triangle-free graph. J. Comb. Theory Ser. B 102, 1061–1066 (2012)

    Article  MathSciNet  Google Scholar 

  15. Győri, E., Li, H.: The maximum number of triangles in \(C_{2k+1}\)-free graph. Comb. Probab. Comput. 21, 187–191 (2012)

    Article  Google Scholar 

  16. Hatami, H., Hladký, J., Král, D., Norine, S., Razborov, A.: On the number of Pentagons in triangle-free graphs. J. Comb. Theory Ser. A 120, 722–732 (2013)

    Article  MathSciNet  Google Scholar 

  17. Khormali, O.: Extremal problems for forests in graphs and hypergraphs, Graduate Student Theses, Dissertations, Professional Papers. 11483 (2019) https://scholarworks.umt.edu/etd/11483

  18. Lidický, B., Liu, H., Palmer, C.: On the Turán number of forests, Electron. J. Combin. 20, Paper 62, 13 pages (2013)

  19. Luo, R.: The maximum number of cliques in graphs without long cycles. J. Comb. Theory Ser. B 128, 219–226 (2017)

    Article  MathSciNet  Google Scholar 

  20. Ma, J., Qiu, Y.: Some sharp results on the generalized Turán numbers. Eur. J. Comb. 84, 103026 (2020). (16 pages)

    Article  Google Scholar 

  21. Ning, B., Peng, X.: Extensions of the Erdős-Gallai theorem and Luo’s theorem. Comb. Probab. Comput. 29, 128–136 (2020)

    Article  Google Scholar 

  22. Turán, P.: On an extremal problem in graph theory. Mat. Fiz. Lapok 48, 436–452 (1941)

    MathSciNet  Google Scholar 

  23. Wang, J.: The shifting method and generalized Turán number of matchings. Eur. J. Comb. 85, 103057 (2020). (7 pages)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referees for their very careful comments. This research was supported by NSFC under Grant Nos. 11871270 and 11931006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaojun Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Zhang, F. & Chen, Y. Generalized Turán Number of Even Linear Forests. Graphs and Combinatorics 37, 1437–1449 (2021). https://doi.org/10.1007/s00373-021-02329-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-021-02329-2

Keywords

Navigation