Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Acyclic Edge Coloring of Chordal Graphs with Bounded Degree

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. It was conjectured that every simple graph G with maximum degree \(\Delta \) is acyclically edge-\((\Delta +2)\)-colorable. In this paper, we confirm the conjecture for chordal graphs G with \(\Delta \le 6\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abu-Khzam, F.N., Heggernes, P.: Enumerrating minimal dominating sets in chordal graphs. Inf. Process. Lett. 116, 739–743 (2016)

    Article  Google Scholar 

  2. Alon, N., McDiarmid, C., Reed, B.: Acyclic coloring of graphs. Random Struct. Algorithms 2, 277–288 (1991)

    Article  MathSciNet  Google Scholar 

  3. Alon, N., Sudakov, B., Zaks, A.: Acyclic edge colorings of graphs. J. Graph Theory 37, 157–167 (2001)

    Article  MathSciNet  Google Scholar 

  4. Basavaraju, M., Chandran, L.S.: Acyclic edge coloring of subcubic graphs. Discrete Math. 308, 6650–6653 (2008)

    Article  MathSciNet  Google Scholar 

  5. Basavaraju, M., Chandran, L.S.: Acyclic edge coloring of graphs with maximum degree \(4\). J. Graph Theory 61, 192–209 (2009)

    Article  MathSciNet  Google Scholar 

  6. Basavaraju, M., Chandran, L.S.: Acyclic edge coloring of 2-degenerate graph. J. Graph Theory 69, 1–27 (2012)

    Article  MathSciNet  Google Scholar 

  7. Basavaraju, M., Chandran, L.S., Cohen, N., Havet, F., Müller, T.: Acyclic edge-coloring of planar graphs. SIAM J. Discrete Math. 25, 463–478 (2011)

    Article  MathSciNet  Google Scholar 

  8. Esperet, L., Parreau, A.: Acyclic edge-coloring using entropy compression. Eur. J. Combin. 34, 1019–1027 (2013)

    Article  MathSciNet  Google Scholar 

  9. Fiamčik, J.: The acyclic chromatic class of a graph. Math. Slov. 28, 139–145 (1978). (in Russian)

    MathSciNet  MATH  Google Scholar 

  10. Giotis, L., Kirousis, L., Psaromiligkos, K.I., Thilikos, D.M.: Acyclic edge colouring through the Lov\(\acute{\rm a}\)sz Local Lemma. Theoret. Comput. Sci. 665, 40–50 (2017)

    Article  MathSciNet  Google Scholar 

  11. Molloy, M., Reed, B.: Further algorithmic aspects of Lovász local lemma. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pp. 524–529 (1998)

  12. Ndreca, S., Procacci, A., Scoppola, B.: Improved bounds on coloring of graphs. Eur. J. Combin. 33, 592–609 (2012)

    Article  MathSciNet  Google Scholar 

  13. Shu, Q., Wang, Y., Ma, Y., Wang, W.: Acyclic edge coloring of \(4\)-regular graphs without \(3\)-cycles. Bull. Malays. Math. Sci. Soc. 42, 285–296 (2019)

    Article  MathSciNet  Google Scholar 

  14. Skulrattanakulchai, S.: Acyclic colorings of subcubic graphs. Inf. Process. Lett. 92, 161–167 (2004)

    Article  MathSciNet  Google Scholar 

  15. Wang, T., Zhang, Y.: Further result on acyclic chromatic index of planar graphs. Discrete Appl. Math. 201, 228–247 (2016)

    Article  MathSciNet  Google Scholar 

  16. Wang, W., Ma, Y., Shu, Q., Wang, Y.: Acyclic edge coloring of \(4\)-regular graphs (II). Bull. Malays. Math. Sci. Soc. 42, 2047–2054 (2019)

    Article  MathSciNet  Google Scholar 

  17. Wang, W., Shu, Q., Wang, Y.: A new upper bound on the acyclic chromatic indices of planar graphs. Eur. J. Combin. 34, 338–354 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first two authors were partially supported by the National Natural Science Foundation of China (No. 11922112), the Natural Science Foundation of Tianjin (Nos. 20JCJQJC00090 and 20JCZDJC00840) and the Fundamental Research Funds for the Central Universities, Nankai University (No. 63213037). The third author was partially supported by NSFC (No. 11771402; No. 12031018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Shi, Y. & Wang, W. Acyclic Edge Coloring of Chordal Graphs with Bounded Degree. Graphs and Combinatorics 37, 2621–2636 (2021). https://doi.org/10.1007/s00373-021-02378-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-021-02378-7

Keywords

Navigation