Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Multi-color Forcing in Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let \(G=(V,E)\) be a finite connected graph along with a coloring of the vertices of G using the colors in a given set X. In this paper, we introduce multi-color forcing, a generalization of zero-forcing on graphs, and give conditions in which the multi-color forcing process terminates regardless of the number of colors used. We give an upper bound on the number of steps required to terminate a forcing procedure in terms of the number of vertices in the graph on which the procedure is being applied. We then focus on multi-color forcing with three colors and analyze the end states of certain families of graphs, including complete graphs, complete bipartite graphs, and paths, based on various initial colorings. We end with a few directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. AIM Minimum Rank-Special Graphs Work Group.: Zero forcing sets and the minimum rank of graphs. Linear Algebra Appl. 428(7), 1628–1648 (2008). https://doi.org/10.1016/j.laa.2007.10.009

    Article  MathSciNet  Google Scholar 

  2. Barioli, F., Barrett, W., Fallat, S.M., Hall, H.T., Hogben, L., Shader B., van den Driessche, P., van der Holst, H.: Zero forcing parameters and minimum rank problems. Linear Algebra Appl. 433(2), 401–411 (2010). https://doi.org/10.1016/j.laa.2010.03.008

    Article  MathSciNet  MATH  Google Scholar 

  3. Barioli, F., Barrett, W., Fallat, S.M., Hall, H.T., Hogben, L., Shader, B., van den Driessche, P., van der vaHolst, H.: Parameters related to tree-width, zero forcing and maximum nullity of a graph. J. Graph Theory 72(2), 146–177 (2013). https://doi.org/10.1002/jgt.21637

    Article  MathSciNet  MATH  Google Scholar 

  4. Burgarth D, Giovannetti, V.: Full control by locally induced relaxation. Phys. Rev. Lett. 99, 10 (2007). https://doi.org/10.1103/PhysRevLett.99.100501

    Article  Google Scholar 

  5. Chilakamarri, K.B., Dean, N., Kang, C.X., Yi, E.: Iteration index of a zero forcing set in a graph. Bull. Inst. Combin Appl. 64, 57–72 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Dreyer Jr., P.A., Robert, F.S.: Irreversible \(k\)-threshold processes: graph-theoretical threshold models of the spread of disease and of opinion. Discrete Appl. Math. 157(7), 1615–1627 (2009). https://doi.org/10.1016/j.dam.2008.09.012

    Article  MathSciNet  MATH  Google Scholar 

  7. Edholm, C.J., Hogben, L., Huynh, M., LaGrange, J., Row, D.D.: Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph. Linear Algebra Appl. 436(12), 4352–4372 (2012). https://doi.org/10.1016/j.laa.2010.10.015

    Article  MathSciNet  MATH  Google Scholar 

  8. Hogben, L., Huynh, M., Kingsley, N., Meyer, S., Walker, S., Young, M.: Propagation time for zero forcing on a graph. Discrete Appl. Math. 160(13–14), 1994–2005 (2012). https://doi.org/10.1016/j.dam.2012.04.003

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, L.-H., Chang, G.J., Yeh, H.-G.: On minimum rank and zero forcing sets of a graph. Linear Algebra Appl. 432(11), 2961–2973 (2010). https://doi.org/10.1016/j.laa.2010.01.001

    Article  MathSciNet  MATH  Google Scholar 

  10. Kalinowski, T., Kamčev, N., Sudakov, B.: The zero forcing number of graphs. SIAM J. Discrete Math. 33(1), 95–115 (2019). https://doi.org/10.1137/17M1133051

    Article  MathSciNet  MATH  Google Scholar 

  11. Misc zero forcing and its applications. American Institute of Mathematics. http://aimpl.org/zeroforcing/1/

Download references

Acknowledgements

The authors thank Minerva Catral for introducing them to this problem.

Funding

P. E. Harris was supported in part by the National Science Foundation Grant DMS-1620202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela E. Harris.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozeman, C., Harris, P.E., Jain, N. et al. Multi-color Forcing in Graphs. Graphs and Combinatorics 36, 1855–1868 (2020). https://doi.org/10.1007/s00373-020-02201-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-020-02201-9

Keywords

Mathematics Subject Classification

Navigation