Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Uniformly Resolvable Cycle Decompositions with Four Different Factors

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

In this paper, we consider uniformly resolvable decompositions of complete graph \(K_v\)(or \(K_v\) minus a 1-factor I for even v) into cycles. We will focus on the existence of factorizations of \(K_v\) or \(K_v-I\) containing up to four non-isomorphic factors. We obtain all possible solutions for uniform factors involving 4, m, 2m and 4m-cycles with a few possible exceptions when m is odd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, P., Billington, E.J., Bryant, D.E., El-Zanati, S.I.: On the Hamilton–Waterloo problem. Graphs Comb. 18, 31–51 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alspach, B., Schellenberg, P.J., Stinson, D.R., Wagner, D.: The Oberwolfach problem and factors of uniform odd length cycles. J. Comb. Theory Ser. A 52, 20–43 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Assaf, A., Hartman, A.: Resolvable group divisible designs with block size 3. Discrete Math. 77, 5–20 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bryant, D., Danziger, P., Dean, M.: On the Hamilton–Waterloo problem for bipartite 2-factors. J Comb. Des. 21, 60–80 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buratti, M., Danziger, P.: A cyclic solution for an infinite class of Hamilton–Waterloo problems. Graphs Comb. 32, 521–531 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buratti, M., Rinaldi, G.: On sharply vertex transitive 2-factorizations of the complete graph. J. Comb. Theory Ser. A 111, 245–256 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cavenagh, N.J., El-Zanati, S.I., Khodkar, A., Vanden Eynden, C.: On a generalization of the Oberwolfach problem. J. Comb. Theory Ser. A 106(2), 255–275 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Danziger, P., Quattrocchi, G., Stevens, B.: The Hamilton–Waterloo problem for cycle sizes 3 and 4. J. Comb. Des. 17, 342–352 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diestel, R.: Graph Theory, 4th edn. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  10. Dinitz, J.H., Ling, A.C.H.: The Hamilton–Waterloo problem: the case of triangle-factors and one Hamilton cycle. J. Comb. Des. 17, 160–176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lo Faro, G., Milici, S., Tripodi, A.: Uniformly resolvable decompositions of \(K_v\) into paths on two, three and four vertices. Discrete Math. 338, 2212–2219 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fu, H.L., Huang, K.C.: The Hamilton–Waterloo problem for two even cycles factors. Taiwan. J. Math. 12, 933–940 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gionfriddo, M., Milici, S.: On the existence of uniformly resolvable decompositions of \(K_v\) and \(K_v-I\) into paths and kites. Discrete Math. 313, 2830–2834 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gionfriddo, M., Milici, S.: Uniformly resolvable \(H-\)designs with \(H = {P_3, P_4}\). Australas. J. Comb. 60, 325–332 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Häggkvist, R.: A lemma on cycle decompositions. Ann. Discrete Math. 27, 227–232 (1985)

    MathSciNet  MATH  Google Scholar 

  16. Hoffman, D.G., Schellenberg, P.J.: The existence of \(C_k-\)factorizations of \(K_{2n}-I\). Discrete Math. 97, 243–250 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Horak, P., Nedela, R., Rosa, A.: The Hamilton–Waterloo problem: the case of Hamilton cycles and triangle-factors. Discrete Math. 284, 181–188 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Keranen, M., Özkan, S.: The Hamilton–Waterloo problem with 4-cycles and a single factor of \(n-\)cycles. Graphs Comb. 29, 1827–1837 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Köhler, E.: Über das Oberwolfacher Problem, Beiträge zur Geometrischen Algebra, Basel, pp. 189–201 (1977)

  20. Küçükçifçi, S., Milici, S., Tuza, Zs: Maximum uniformly resolvable decompositions of \(K_v\) into \(3-\)stars and \(3-\)cycles. Discrete Math. 338, 1667–1673 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ling, A.C.H., Dinitz, J.H.: The Hamilton–Waterloo problem with triangle-factors and Hamilton cycles: the case \(n \equiv 3~(mod 18)\). J Comb. Math. Comb. Comput. 70, 143–147 (2009)

    MATH  Google Scholar 

  22. Liu, J.: The equipartite Oberwolfach problem with uniform tables. J. Comb. Theory Ser. A 101, 20–34 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lucas, E.: Récréations mathématiques, vol. 2. Gauthier-Villars, Paris (1892)

    MATH  Google Scholar 

  24. Milici, S.: A note on uniformly resolvable decompositions of \(K_v\) and \(K_v-I\) into \(2-\)stars and \(4-\)cycles. Australas. J. Comb. 56, 195–200 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Milici, S., Tuza, Zs: Uniformly resolvable decompositions of \(K_v\) into \(P_3\) and \(K_3\) graphs. Discrete Math. 331, 137–141 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Odabaşı, U., Özkan, S.: The Hamilton–Waterloo problem with \(C_4\) and \(C_m\) factors. Discrete Math. 339(1), 263–269 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Piotrowski, W.L.: The solution of the bipartite analogue of the Oberwolfach problem. Discrete Math. 97, 339–356 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Piotrowski, W.L.: Untersuchungen uber das Oberwolfacher Problem. Arbeitspapier (1979)

  29. Rees, R.: Two new direct product-type constructions for resolvable group-divisible designs. J. Comb. Des. 1, 15–26 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, L., Chen, F., Cao, H.: The Hamilton–Waterloo problem for \(C_3-\)factors and \(C_n-\)factors. J. Comb. Des. (2017). https://doi.org/10.1002/jcd.21561

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Odabaşı.

Additional information

This work is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) under project number 113F033.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odabaşı, U., Özkan, S. Uniformly Resolvable Cycle Decompositions with Four Different Factors. Graphs and Combinatorics 33, 1591–1606 (2017). https://doi.org/10.1007/s00373-017-1856-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-017-1856-6

Keywords

Navigation