Abstract
In this paper, we consider uniformly resolvable decompositions of complete graph \(K_v\)(or \(K_v\) minus a 1-factor I for even v) into cycles. We will focus on the existence of factorizations of \(K_v\) or \(K_v-I\) containing up to four non-isomorphic factors. We obtain all possible solutions for uniform factors involving 4, m, 2m and 4m-cycles with a few possible exceptions when m is odd.
Similar content being viewed by others
References
Adams, P., Billington, E.J., Bryant, D.E., El-Zanati, S.I.: On the Hamilton–Waterloo problem. Graphs Comb. 18, 31–51 (2002)
Alspach, B., Schellenberg, P.J., Stinson, D.R., Wagner, D.: The Oberwolfach problem and factors of uniform odd length cycles. J. Comb. Theory Ser. A 52, 20–43 (1989)
Assaf, A., Hartman, A.: Resolvable group divisible designs with block size 3. Discrete Math. 77, 5–20 (1989)
Bryant, D., Danziger, P., Dean, M.: On the Hamilton–Waterloo problem for bipartite 2-factors. J Comb. Des. 21, 60–80 (2013)
Buratti, M., Danziger, P.: A cyclic solution for an infinite class of Hamilton–Waterloo problems. Graphs Comb. 32, 521–531 (2016)
Buratti, M., Rinaldi, G.: On sharply vertex transitive 2-factorizations of the complete graph. J. Comb. Theory Ser. A 111, 245–256 (2005)
Cavenagh, N.J., El-Zanati, S.I., Khodkar, A., Vanden Eynden, C.: On a generalization of the Oberwolfach problem. J. Comb. Theory Ser. A 106(2), 255–275 (2004)
Danziger, P., Quattrocchi, G., Stevens, B.: The Hamilton–Waterloo problem for cycle sizes 3 and 4. J. Comb. Des. 17, 342–352 (2009)
Diestel, R.: Graph Theory, 4th edn. Springer, Berlin (2010)
Dinitz, J.H., Ling, A.C.H.: The Hamilton–Waterloo problem: the case of triangle-factors and one Hamilton cycle. J. Comb. Des. 17, 160–176 (2009)
Lo Faro, G., Milici, S., Tripodi, A.: Uniformly resolvable decompositions of \(K_v\) into paths on two, three and four vertices. Discrete Math. 338, 2212–2219 (2015)
Fu, H.L., Huang, K.C.: The Hamilton–Waterloo problem for two even cycles factors. Taiwan. J. Math. 12, 933–940 (2008)
Gionfriddo, M., Milici, S.: On the existence of uniformly resolvable decompositions of \(K_v\) and \(K_v-I\) into paths and kites. Discrete Math. 313, 2830–2834 (2013)
Gionfriddo, M., Milici, S.: Uniformly resolvable \(H-\)designs with \(H = {P_3, P_4}\). Australas. J. Comb. 60, 325–332 (2014)
Häggkvist, R.: A lemma on cycle decompositions. Ann. Discrete Math. 27, 227–232 (1985)
Hoffman, D.G., Schellenberg, P.J.: The existence of \(C_k-\)factorizations of \(K_{2n}-I\). Discrete Math. 97, 243–250 (1991)
Horak, P., Nedela, R., Rosa, A.: The Hamilton–Waterloo problem: the case of Hamilton cycles and triangle-factors. Discrete Math. 284, 181–188 (2004)
Keranen, M., Özkan, S.: The Hamilton–Waterloo problem with 4-cycles and a single factor of \(n-\)cycles. Graphs Comb. 29, 1827–1837 (2013)
Köhler, E.: Über das Oberwolfacher Problem, Beiträge zur Geometrischen Algebra, Basel, pp. 189–201 (1977)
Küçükçifçi, S., Milici, S., Tuza, Zs: Maximum uniformly resolvable decompositions of \(K_v\) into \(3-\)stars and \(3-\)cycles. Discrete Math. 338, 1667–1673 (2015)
Ling, A.C.H., Dinitz, J.H.: The Hamilton–Waterloo problem with triangle-factors and Hamilton cycles: the case \(n \equiv 3~(mod 18)\). J Comb. Math. Comb. Comput. 70, 143–147 (2009)
Liu, J.: The equipartite Oberwolfach problem with uniform tables. J. Comb. Theory Ser. A 101, 20–34 (2003)
Lucas, E.: Récréations mathématiques, vol. 2. Gauthier-Villars, Paris (1892)
Milici, S.: A note on uniformly resolvable decompositions of \(K_v\) and \(K_v-I\) into \(2-\)stars and \(4-\)cycles. Australas. J. Comb. 56, 195–200 (2013)
Milici, S., Tuza, Zs: Uniformly resolvable decompositions of \(K_v\) into \(P_3\) and \(K_3\) graphs. Discrete Math. 331, 137–141 (2014)
Odabaşı, U., Özkan, S.: The Hamilton–Waterloo problem with \(C_4\) and \(C_m\) factors. Discrete Math. 339(1), 263–269 (2016)
Piotrowski, W.L.: The solution of the bipartite analogue of the Oberwolfach problem. Discrete Math. 97, 339–356 (1991)
Piotrowski, W.L.: Untersuchungen uber das Oberwolfacher Problem. Arbeitspapier (1979)
Rees, R.: Two new direct product-type constructions for resolvable group-divisible designs. J. Comb. Des. 1, 15–26 (1993)
Wang, L., Chen, F., Cao, H.: The Hamilton–Waterloo problem for \(C_3-\)factors and \(C_n-\)factors. J. Comb. Des. (2017). https://doi.org/10.1002/jcd.21561
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) under project number 113F033.
Rights and permissions
About this article
Cite this article
Odabaşı, U., Özkan, S. Uniformly Resolvable Cycle Decompositions with Four Different Factors. Graphs and Combinatorics 33, 1591–1606 (2017). https://doi.org/10.1007/s00373-017-1856-6
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-017-1856-6