Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Sufficient Condition for Pfaffian Graphs on the Torus

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The significance of Pfaffian orientations stems from the fact that if a graph has such an orientation, then the number of perfect matchings (as known as the dimer problem) can be computed in polynomial time. A graph is called Pfaffian if it has a Pfaffian orientation. The Pfaffian property of a graph is not well-characterized. We do not even know whether the property of an undirected graph that it has a Pfaffian orientation is in NP. In this paper, we consider Pfaffian graphs on torus. More specific, we prove that for a non-bipartite graph embedding on the torus, if the boundaries of all faces are even, then it is Pfaffian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allen, G.R.: Dimer models for the antiferroelectric transition in copper formate tetrahydrate. J. Chem. Phys. 60, 3299–3309 (1974)

    Article  Google Scholar 

  2. Fischer, I., Little, C.H.C.: A characterization of Pfaffian near bipartite graphs. J. Comb. Theory Ser. B 82, 175–222 (2001)

    Article  MATH  Google Scholar 

  3. Kasteleyn, P.W.: The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice. Physica 27, 1209–1225 (1961)

    Article  MATH  Google Scholar 

  4. Kasteleyn, P.W.: Graph theory and crystal physics. In: Harary, F. (ed.) Graph Theory and Theoretical Physics, pp. 43–110. Academic Press, London (1967)

    Google Scholar 

  5. Lieb, E.H., Loss, M.: Fluxes, Laplacians, and Kasteleyn’s theorem. Duke Math. J. 71, 337–363 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Little, C.H.C.: Kasteleyn’s theorem and arbitrary graphs. Can. J. Math. 25, 758–764 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  7. Little, C.H.C.: A characterization of convertible \((0,1)\)-matrices. J. Comb. Theory Ser. B 18, 187–208 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lovász, L., Plummer, M.D.: Matching Theory. North-Holland, Amsterdam (1986)

    MATH  Google Scholar 

  9. Lu, F.L., Zhang, L.Z.: The Pfaffian property of Cartesian products of graphs. J. Comb. Optim. 27, 530–540 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lu, F.L., Zhang, L.Z., Wang, Y.: The Pfaffian property of circulant graphs. Discret. Appl. Math. 181, 185–192 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  11. McCuaig, W.: Pólya’s permanent problem. Electron. J. Combin. 11(1), R79 (2004)

  12. Nagle, J.F., Yokoi, C.S.O., Bhattacharjee, S.M.: Dimer models on an isotropic lattices. In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 13. Academic Press, New York (1989)

    Google Scholar 

  13. Norine, S.: Matching structure and Pfaffian orientations of graphs. Doctoral dissertation, Georgia Institute of Technology (2005)

  14. Robertson, N., Seymour, P.D., Thomas, R.: Permanents, Pfaffian orientations and even directed circuits. Ann. Math. 2(150), 929–975 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Salinas, S.R., Nagle, J.F.: Theory of the phase transition in the layered hydrogen-bonded SnCl\(_2\cdot \)2H\(_2\)O crystal. Phys. Rev. B 9, 4920–4931 (1974)

    Article  Google Scholar 

  16. Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics—an exact result. Philos. Mag. 6, 1061–1063 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tesler, G.: Matchings in graphs on non-orientable surfaces. J. Comb. Theory Ser. B 78, 198–231 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Thomassen, C.: Tilings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface. Trans. Am. Math. Soc. 323, 605–635 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang, L.Z., Wang, Y., Lu, F.L.: Pfaffian graphs embedding on the torus. Sci. China Math. 56, 1957–1964 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referees for their careful reading and many helpful suggestions that greatly improved our original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianzhu Zhang.

Additional information

The research is supported by National Natural Science Foundation of China (Grant nos. 11471273; 11671186).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Zhang, L. & Zhang, M. A Sufficient Condition for Pfaffian Graphs on the Torus. Graphs and Combinatorics 33, 1249–1260 (2017). https://doi.org/10.1007/s00373-017-1841-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-017-1841-0

Keywords

Navigation