Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Spanning Trails with Maximum Degree at Most 4 in \(2K_2\)-Free Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A graph is called \(2K_2\)-free if it does not contain two independent edges as an induced subgraph. Gao and Pasechnik conjectured that every \(\frac{3}{2}\)-tough \(2K_2\)-free graph with at least three vertices has a spanning trail with maximum degree at most 4. In this paper, we confirm this conjecture. We also provide examples for all \(t < \frac{5}{4}\) of t-tough graphs that do not have a spanning trail with maximum degree at most 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, D., Broersma, H.J., Veldman, H.J.: Not every 2-tough graph is Hamiltonian. In: Proceedings of the 5th Twente Workshop on Graphs and Combinatorial Optimization (Enschede, 1997), vol. 99, pp. 317–321 (2000)

  2. Bauer, D., Broersma, H.J., Schmeichel, E.: Toughness in graphs—a survey. Graphs Combin. 22(1), 1–35 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Broersma, H., Patel, V., Pyatkin, A.: On toughness and Hamiltonicity of \(2K_2\)-free graphs. J. Graph Theory 75(3), 244–255 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chung, F.R.K., Gyárfás, A., Tuza, Z., Trotter, W.T.: The maximum number of edges in \(2K_2\)-free graphs of bounded degree. Discrete Math. 81(2), 129–135 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chvátal, V.: Tough graphs and Hamiltonian circuits. Discrete Math. 5, 215–228 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  6. El-Zahar, M., Erdős, P.: On the existence of two nonneighboring subgraphs in a graph. Combinatorica 5(4), 295–300 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ellingham, M.N., Zha, X., Zhang, Y.: Spanning 2-trails from degree sum conditions. J. Graph Theory 45(4), 298–319 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gao, M., Pasechnik, D.: On \(k\)-walks in \(2{K}_2\)-free graphs. (2014) arXiv:1412.0514v2

  9. Gao, M., Pasechnik, D.: Edge-dominating cycles, \(k\)-walks and hamilton prisms in \(2{K}_2\)-free graphs. J. Knot Theory Ramif 25(12), 1642011.1–1642011.9 (2016)

    MATH  Google Scholar 

  10. Jackson, B ., Wormald, N .C.: \(k\)-walks of graphs. Australas. J. Combin 2, 135–146 (1990). Combinatorial mathematics and combinatorial computing, vol. 2 (Brisbane, 1989)

  11. Li, Ping, Li, Hao, Chen, Ye, Fleischner, Herbert, Lai, Hong-Jian: Supereulerian graphs with width \(s\) and \(s\)-collapsible graphs. Discrete Appl. Math. 200, 79–94 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  12. Meister, D.: Two characterisations of minimal triangulations of \(2K_2\)-free graphs. Discrete Math. 306(24), 3327–3333 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Paoli, M., Peck, G.W., Trotter Jr., W.T., West, D.B.: Large regular graphs with no induced \(2K_2\). Graphs Combin. 8(2), 165–197 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songling Shan.

Additional information

M. N. Ellingham: Supported by Simons Foundation award 429625.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Ellingham, M.N., Saito, A. et al. Spanning Trails with Maximum Degree at Most 4 in \(2K_2\)-Free Graphs. Graphs and Combinatorics 33, 1095–1101 (2017). https://doi.org/10.1007/s00373-017-1823-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-017-1823-2

Keywords

Navigation