Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Extremal Values of the Chromatic Number for a Given Degree Sequence

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

For a degree sequence \(d:d_1\ge \cdots \ge d_n\), we consider the smallest chromatic number \(\chi _{\min }(d)\) and the largest chromatic number \(\chi _{\max }(d)\) among all graphs with degree sequence d. We show that if \(d_n\ge 1\), then \(\chi _{\min }(d)\le \max \left\{ 3,d_1-\frac{n+1}{4d_1}+4\right\} \), and, if \(\sqrt{n+\frac{1}{4}}-\frac{1}{2}>d_1\ge d_n\ge 1\), then \(\chi _{\max }(d)=\max \nolimits _{i\in [n]}\min \left\{ i,d_i+1\right\} \). For a given degree sequence d with bounded entries, we show that \(\chi _{\min }(d), \chi _{\max }(d)\), and also the smallest independence number \(\alpha _{\min }(d)\) among all graphs with degree sequence d, can be determined in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, D., Hakimi, S.L., Kahl, N., Schmeichel, E., Bauer, D., Hakimi, S.L., Kahl, N., Schmeichel, E.: Best monotone degree bounds for various graph parameters. Congr. Numer. 192, 75–84 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Caro, Y.: New results on the independence number, Technical Report, Tel-Aviv University (1979)

  3. Dvořák, Z., Mohar, B.: Chromatic number and complete graph substructures for degree sequences. Combinatorica 33, 513–529 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Erdős, P., Gallai, T.: Graphs with prescribed degrees of vertices (Hungarian). Mat. Lapok 11, 264–274 (1960)

    MATH  Google Scholar 

  5. Gale, D.: A theorem on flows in networks. Pac. J. Math. 7, 1073–1082 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a linear graph. I. J. Soc. Ind. Appl. Math. 10, 496–506 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  7. Harant, J., Rautenbach, D.: Independence in connected graphs. Discrete Appl. Math. 159, 79–86 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Harant, J., Schiermeyer, I.: On the independence number of a graph in terms of order and size. Discrete Math. 232, 131–138 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Havel, V.: A remark on the existence of finite graphs. Časopis Pro Pěstování Mat. 80, 477–480 (1955)

    MATH  Google Scholar 

  10. Kleitman, D.J., Wang, D.L.: Algorithms for constructing graphs and digraphs with given valences and factors. Discrete Math. 6, 79–88 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Punnim, N.: Degree sequences and chromatic numbers of graphs. Graphs Comb. 18, 597–603 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rao, R.A.: The clique number of a graph with a given degree sequence. In: Proceedings of the Symposium on Graph Theory (Indian Statistical Institute, Calcutta, 1976). ISI Lecture Notes Series, vol. 4, pp. 251–267. Macmillan of India, New Delhi (1979)

  13. Rao, A.R.: An Erdős–Gallai type result on the clique number of a realization of a degree sequence (unpublished)

  14. Robertson, N., Song, Z.-X.: Hadwiger number and chromatic number for near regular degree sequences. J. Graph Theory 64, 175–183 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Can. J. Math. 9, 371–377 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  16. Welsh, D.J.A., Powell, M.B.: An upper bound for the chromatic number of a graph and its application to timetabling problems. Comput. J. 10, 85–86 (1967)

    Article  MATH  Google Scholar 

  17. Wei, V.K.: A lower bound on the stability number of a simple graph, Technical memorandum, TM 81-11217-9, Bell laboratories (1981)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Rautenbach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessy, S., Rautenbach, D. Extremal Values of the Chromatic Number for a Given Degree Sequence. Graphs and Combinatorics 33, 789–799 (2017). https://doi.org/10.1007/s00373-017-1814-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-017-1814-3

Keywords

Mathematics Subject Classification

Navigation