Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The Strong Convexity Spectra of Grids

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let D be a connected oriented graph. A set \(S \subseteq V(D)\) is convex in D if, for every pair of vertices \(x, y \in S\), the vertex set of every xy-geodesic, (xy shortest directed path) and every yx-geodesic in D is contained in S. The convexity number, \(\hbox {con}(D)\), of a non-trivial oriented graph, D, is the maximum cardinality of a proper convex set of D. The strong convexity spectrum of the graph G, \(S_{SC} (G)\), is the set \(\{\hbox {con}(D) :\ D \hbox { is a strong orientation of G} \}\). In this paper we prove that the problem of determining the convexity number of an oriented graph is \(\mathcal {NP}\)-complete, even for bipartite oriented graphs of arbitrary large girth, extending previous known results for graphs. We also determine \(S_{SC} (P_n \Box P_m)\), for every pair of integers \(n,m \ge 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Araujo, J., Campos, V., Giroire, F., Nisse, N., Sampaio, L., Soares, R.: On the hull numbers of some graph classes. Theor. Comput. Sci. 475, 1–12 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bang-Jensen, J., Gutin, G.: Digraphs. Theory, Algorithms and Applications. Springer-Verlag, Berlin (2002)

    MATH  Google Scholar 

  3. Chartrand, G., Wall, C.E., Zhang, P.: The convexity number of a graph. Graphs Comb. 18, 209–217 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chartrand, G., Zhang, P.: The geodetic number of an oriented graph. Eur. J. Comb. 21, 181–189 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chartrand, G., Fink, J.F., Zhang, P.: Convexity in oriented graphs. Discrete Appl. Math. 116(1–2), 115–126 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dourado, M.C., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: Some remarks on the geodetic number of a graph. Discrete Math. 310(4), 832–837 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dourado, M.C., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: On the convexity number of graphs. Graphs Comb. 28, 333–345 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duchet, P.: Convexity in combinatorial structures. In: Proceedings of the 14th Winter School on Abstract Analysis. Circolo Matematico di Palermo, Palermo. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 14. pp. 261–293 (1987)

  9. Everett, M.G., Seidman, S.B.: The hull number of a graph. Discrete Math. 57, 217–223 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gimbel, J.: Some remarks on the convexity number of a graph. Graphs Comb. 19, 357–361 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harary, F., Loukakis, E., Tsouros, C.: The geodetic number of a graph. Math. Comput. Model. 17(11), 89–95 (1993)

    Article  MATH  Google Scholar 

  12. Tong, L.-D., Yen, P.-L., Farrugia, A.: The convexity spectra of graphs. Discrete Appl. Math. 156, 1838–1845 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tong, L.-D., Yen, P.-L.: Strong convexity spectra of wheels and complete bipartite graphs. (personal communication, work in progress)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Hernández-Cruz.

Additional information

This research was supported by CONACyT-México under Projects 178395 and 166306 and PAPIIT-México under Projects IN101912 and IN104915.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo-Pardo, G., Hernández-Cruz, C. & Montellano-Ballesteros, J.J. The Strong Convexity Spectra of Grids. Graphs and Combinatorics 33, 689–713 (2017). https://doi.org/10.1007/s00373-017-1805-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-017-1805-4

Keywords

Mathematics Subject Classification

Navigation