Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An Unoriented Variation on de Bruijn Sequences

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

For positive integers kn, a de Bruijn sequence B(kn) is a finite sequence of elements drawn from k characters whose subwords of length n are exactly the \(k^n\) words of length n on k characters. This paper studies the unoriented de Bruijn sequence uB(kn), an analog to de Bruijn sequences, but for which the sequence is read both forwards and backwards to determine the set of subwords of length n. We show that nontrivial unoriented de Bruijn sequences of optimal length exist if and only if k is two or odd and n is less than or equal to 3. Unoriented de Bruijn sequences for any k, n may be constructed from certain Eulerian trails in Eulerizations of unoriented de Bruijn graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. de Bruijn, N.G.: A combinatorial problem. Nederl. Akad. Wetensch. Proc. 49, 758–764 (1946)

    MathSciNet  MATH  Google Scholar 

  2. de Bruijn N. G.: Acknowledgement of priority to C. Flye Sainte-Marie on the counting of circular arrangements of \(2^n\) zeros and ones that show each n-letter word exactly once, Technological University Eindhoven Report 75-WSK-06 1-14 (1975)

  3. Edmonds, J., Johnson, E.L.: Matching Euler tours and the Chinese postman problem. Math. Program. 5, 88–124 (1973)

    Article  MATH  Google Scholar 

  4. Esfahanian, A.-H., Hakimi, S.L.: Fault-tolerant routing in de Bruijn communication networks. IEEE Trans. Comput. 34(9), 777–788 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fleury, M.: Deux problmes de Géométrie de situation. J. de mathématiques élémentaires 2nd Ser 2, 257–261 (1883)

  6. Hierholzer, C.: Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Math. Ann. 6(1), 30–32 (1873)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kuo, J., Fu, H.-L.: On the diameter of the generalized undirected de Bruijn graphs UGB(n, m), \(n^{2} < m \le n^3\). Networks 52(4), 180–182 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kari, L., Xu, Z.: de Bruijn sequences revisited. In: Dömösi, P., Iván, Sz. (eds.) Automata and Formal Languages, Proceedings 2011, pp. 241–254 (2016)

  9. Lu, C., Xu, J., Zhang, K.: On \((d,2)\)-dominating numbers of binary undirected de Bruijn graphs. Discret. Appl. Math. 105(13), 137–145 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Motta, F.C., Shipman, P.D., Springer, B.: A point of tangency between combinatorics and differential geometry. Am. Math. Mon. 122, 52–55 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Motta, F.C., Shipman, P.D., Springer, B.: Optimally topologically transitive orbits in discrete-time dynamical systems. Am. Math. Mon. 123(2), 115–135 (2016)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick D. Shipman.

Additional information

This work was motivated by results in [10, 11], supported by NSF Grant DMS-1022635 to PDS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burris, C.S., Motta, F.C. & Shipman, P.D. An Unoriented Variation on de Bruijn Sequences. Graphs and Combinatorics 33, 845–858 (2017). https://doi.org/10.1007/s00373-017-1793-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-017-1793-4

Keywords

Navigation