Abstract
In this paper we work to classify which of the (n, k)-star graphs, denoted by \(S_{n,k}\), are Cayley graphs. Although the complete classification is left open, we derive infinite and non-trivial classes of both Cayley and non-Cayley graphs. We give a complete classification of the case when \(k=2\), showing that \(S_{n,2}\) is Cayley if and only if n is a prime power. We also give a sufficient condition for \(S_{n,3}\) to be Cayley and study other structural properties, such as demonstrating that \(S_{n,k}\) always has a uniform shortest path routing.
Similar content being viewed by others
References
Araki, T.: Hyper Hamiltonian laceability of Cayley graphs generated by transpositions. Networks 48, 121–124 (2006)
Cheng, E., Grossman, J., Qiu, K., Shen, Z.: Distance formula and shortest paths of the \((n, k)\)-star graphs. Inf. Sci. 180, 1671–1680 (2010)
Cheng, E., Lipman, M.J.: Vulnerability issues of star graphs, alternating group graphs and split-stars: strength and toughness. Discret. Appl. Math. 118, 163–179 (2002)
Cheng, E., Lipman, M.J.: Increasing the connectivity of the star graphs. Networks 40, 165–169 (2002)
Cheng, E., Lipták, L., Shawash, N.: Orienting Cayley graphs generated by transposition trees. Comput. Math. Appl. 55, 2662–2672 (2008)
Cheng, E., Lipták, L., Steffy, D.E.: Strong local diagnosability of \((n, k)\)-star graphs and Cayley graphs generated by 2-trees with missing edges. Inf. Process. Lett. 113, 452–456 (2013)
Cheng, E., Qiu, K., Shen, Z.: A short note on the surface area of star graphs. Parallel Process. Lett. 19, 19–22 (2009)
Cheng, E., Qiu, K., Shen, Z.: A generating function approach to the surface area of some interconnection networks. J. Interconnect. Netw. 10, 189–204 (2009)
Cheng, E., Qiu, K., Shen, Z.: A note on the alternating group network. J. Supercomput. 59, 246–248 (2012)
Cheng, E., Qiu, K., Shen, Z.: The number of shortest paths in the \((n, k)\)-star graphs. Discret. Math. Algorithms Appl. 1450051 (2014). doi:10.1142/S1793830914500517
Chiang, W.-K., Chen, R.-J.: The \((n, k)\)-star graph: a generalized star graph. Inf. Process. Lett. 56, 259–264 (1995)
Chung Jr., F.R.K., Coffman, E.G., Reiman, M.I., Simon, B.: The forwarding index of communication networks. IEEE Trans. Inf. Theory 33, 224–232 (1987)
Duh, D.-R., Chen, T.-L., Wang, Y.-L.: \((n-3)\)-edge-fault-tolerant weak-pancyclicity of \((n, k)\)-star graphs. Theor. Comput. Sci. 516, 28–39 (2014)
Gargano, L., Vaccaro, U., Vozella, A.: Fault tolerant routing in the star and pancake interconnection networks. Inf. Process. Lett. 45, 315–320 (1993)
Gauyacq, G.: Edge-forwarding index of star graphs and other Cayley graphs. Discr. Appl. Math. 80, 149–160 (1997)
Gu, Q., Peng, S.: An efficient algorithm for \(k\)-pairwise disjoint paths in star graphs. Inf. Process. Lett. 67, 283–287 (1998)
Gu, Q., Peng, S.: Cluster fault tolerant routing in star graphs. Networks 35, 83–90 (2000)
Hungerford, T.: Algebra, Graduate Texts in Mathematics, vol. 73. Springer, New York (1980)
Heydemann, M.-C., Meyer, J.-C., Sotteau, D.: On the-forwarding index of networks. Discret. Appl. Math. 23, 103–123 (1989)
Hoelzeman, D.A., Bettayeb, S.: On the genus of the star graphs. IEEE Trans. Comput. 43, 755–759 (1994)
Hsu, H.-C., Hsieh, Y.-L., Tan, J.J.M., Hsu, L.H.: Fault Hamiltonicity and fault Hamiltonian connectivity of the \((n, k)\)-star graphs. Networks 42, 189–201 (2003)
Irving, J., Ratton, A.: Minimal factorizations of permutations into star transpositions. Discret. Math. 309, 1549–1554 (2009)
Ji, Y.: A new class of Cayley networks based on the alternating groups. Appl. Math. A J. Chin. Univ. 14, 235–239 (1999)
Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Computing: Design and Analysis of Algorithms. Benjamin/Cummings, San Francisco (1994)
Latifi, S.: A study of fault tolerance in star graph. Inf. Process. Lett. 102, 196–200 (2007)
Li, T.-K., Tan, J.J.M., Hsu, L.-H.: Hyper hamiltonian laceability on edge fault star graph. Inf. Sci. 165, 59–71 (2004)
Mendia, V.E., Sarkar, D.: Optimal broadcasting on the star graphs. IEEE Trans. Parallel Distrib. Syst. 3, 389–396 (1992)
Sabidussi, G.: On a class of fixed-point-free graphs. Proc. Am. Math. Soc. 5, 800–804 (1958)
Sheu, J.P., Wu, C.Y., Chen, T.S.: An optimal broadcasting algorithm without message redundancy in star graphs. Trans. Parallel Distrib. Syst. 6, 653–658 (1995)
Shen, X., Hu, Q., Cong, B., Sudborough, H., Girou, M., Bettayeb, S.: The 4-star graph is not a subgraph of any hypercube. Inf. Process. Lett. 37, 199–203 (1993)
Shen, Z., Qiu, K., Cheng, E.: On the surface area of the \((n, k)\)-star graph. Theor. Comput. Sci. 410, 5481–5490 (2009)
Shim, S., Siran, J., Zerovnik, J.: Counterexamples to the uniform shortest path routing conjecture for vertex-transitive graphs. Discret. Appl. Math. 119, 281–286 (2002)
Tanaka, Y., Kikuchi, Y., Araki, T., Shibata, Y.: Bipancyclic properties of Cayley graphs generated by transpositions. Discret. Math. 310, 748–754 (2010)
Tseng, Y.C., Chen, Y.S., Juang, T.Y., Chang, C.J.: Congestion-free, dilation-2 embedding of complex binary trees into star graphs. Networks 33, 221–231 (1999)
Tseng, Y.C., Sheu, J.P.: Toward optimal broadcast in a star graph using multiple spanning tree. IEEE Trans. Comput. 46, 593–599 (1997)
Wei, Y., Chen, F.: Generalized connectivity of \((n, k)\)-star graphs. Int. J. Found. Comput. Sci. 24, 1235–1241 (2013)
Xiang, Y., Stewart, I.A.: One-to-many node-disjoint paths in \((n, k)\)-star graphs. Discret. Appl. Math. 158, 62–70 (2010)
Yeh, C.H., Parhami, B.: VLSI layouts of complete graphs and star graphs. Inf. Process. Lett. 68, 39–45 (1998)
Yuan, A., Cheng, E., Lipták, L.: Linearly many faults in \((n, k)\)-star graphs. Int. J. Found. Comput. Sci. 22, 1729–1745 (2011)
Zhou, S.M., Xiao, W.J., Parhami, B.: Construction of vertex-disjoint paths in alternating group networks. J. Supercomput. 54, 206–228 (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cheng, E., Li, L., Lipták, L. et al. On the Problem of Determining which (n, k)-Star Graphs are Cayley Graphs. Graphs and Combinatorics 33, 85–102 (2017). https://doi.org/10.1007/s00373-016-1741-8
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-016-1741-8