Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Vertex-Colored Encompassing Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

It is shown that every disconnected vertex-colored plane straight line graph with no isolated vertices can be augmented (by adding edges) into a connected plane straight line graph such that the new edges respect the coloring and the degree of every vertex increases by at most two. The upper bound for the increase of vertex degrees is best possible: there are input graphs that require the addition of two new edges incident to a vertex. The exclusion of isolated vertices is necessary: there are input graphs with isolated vertices that cannot be augmented to a connected vertex-colored plane straight line graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiyama J., Urrutia J.: Simple alternating path problem. Discrete Math. 84, 101–103 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. de Berg M., Cheong O., van Kreveld M., Overmars M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Berlin (2008)

    Book  Google Scholar 

  3. Borgelt M.G., van Kreveld M., Löffler M., Luo J., Merrick D., Silveira R.I., Vahedi M.: Planar bichromatic minimum spanning trees. J. Discrete Algorithms 7, 469–478 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bose P., Gudmundsson J., Smid M.: Constructing plane spanners of bounded degree and low weight. Algorithmica 42, 249–264 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bose P., Houle M.E., Toussaint G.T.: Every set of disjoint line segments admits a binary tree. Discrete Comput. Geom. 26, 387–410 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bose P., Toussaint G.T.: Growing a tree from its branches. J. Algorithms 19, 86–103 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Grantson, M., Meijer, H., Rappaport, D.: Bi-chromatic minimum spanning trees. In: Abstracts of 21st European Workshop on Computational Geometry, Eindhoven, pp. 199–202 (2005)

  8. Guibas L.J., Hershberger J., Leven D., Sharir M., Tarjan R.E.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2, 209–233 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hoffmann M., Speckmann B., Tóth Cs.D.: Pointed binary encompassing trees: simple and optimal. Comput. Geom. Theory Appl. 43, 35–41 (2010)

    Article  MATH  Google Scholar 

  10. Hoffmann M., Tóth Cs.D.: Alternating paths through disjoint line segments. Inf. Proc. Lett. 87, 287–294 (2003)

    Article  MATH  Google Scholar 

  11. Hoffmann M., Tóth Cs.D.: Segment endpoint visibility graphs are Hamiltonian. Comput. Geom. Theory Appl. 26, 47–68 (2003)

    Article  MATH  Google Scholar 

  12. Hurtado F., Kano M., Rappaport D., Tóth Cs.D.: Encompassing colored crossing-free geometric graphs. Comput. Geom. Theory Appl. 39, 14–23 (2008)

    Article  MATH  Google Scholar 

  13. Ishaque, M., Tóth, Cs.D.: Relative convex hulls in semi-dynamic arrangements. Algorithmica (2012, in print)

  14. Kaneko, A.: On the maximum degree of bipartite embeddings of trees in the plane. In: Akiyama, M. et al. (eds.) Discrete and Computational Geometry. Japan Conference on Discrete and Computational Geometry 1998. LNCS, vol. 1763, pp. 166–171. Springer, Berlin (2000)

  15. Kaneko, A., Kano. M.: Discrete geometry on red and blue points in the plane—a survey. In: Discrete and Computational Geometry, The Goodman-Pollack Festschrift. Algorithms and Combinatorics, vol. 25, pp. 551–570. Springer, Berlin (2003)

  16. Kaneko, A., Kano, M.: On paths in a complete bipartite geometric graph. In: Akiyama, M. et al. (eds.) Discrete and Computational Geometry. Japan Conference on Discrete and Computational Geometry 2000. LNCS, vol. 2098, pp. 187–191. Springer, Berlin (2001)

  17. Kaneko A., Kano M., Yoshimoto K.: Alternating Hamiltonian cycles with minimum number of crossings in the plane. Int. J. Comput. Geom. Appl. 10, 73–78 (2000)

    MATH  MathSciNet  Google Scholar 

  18. Lee D.T., Lin A.K.: Generalized Delaunay triangulations for planar graphs. Discrete Comput. Geom. 1, 201–217 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lee D.T., Preparata F.P.: Euclidean shortest path in the presence of rectilinear barriers. Networks 14, 393–410 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Souvaine D.L., Tóth Cs.D.: A vertex-face assignment for plane graphs. Comput. Geom. Theory Appl. 42(5), 388–394 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba D. Tóth.

Additional information

Preliminary results (on encompassing trees for vertex-colored plane straight line forests) have been published in the Proceedings of the 21st ACM Symposium on Computational Geometry (Pisa, 2005), ACM Press, 2005, pp. 81–90.

M. Hoffmann is partially supported by the ESF EUROCORES programme EuroGIGA, CRP GraDR and the Swiss National Science Foundation, SNF Project 20GG21-134306.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, M., Tóth, C.D. Vertex-Colored Encompassing Graphs. Graphs and Combinatorics 30, 933–947 (2014). https://doi.org/10.1007/s00373-013-1320-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-013-1320-1

Keywords

Navigation