Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On Coprimality Graphs for Symmetric Groups

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

For G a group, X a subset of G and π a set of positive integers we define a graph \({\mathcal{C}_{\pi}(G,X)}\) whose vertex set is X with \({x,y \in X}\) joined by an edge provided x ≠ y and the order of xy is in π. Here we investigate \({\mathcal{C}_{\pi}(G,X)}\) when G is a finite symmetric group and X is a G-conjugacy class of elements of order p, p a prime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aschbacher, M.: Finite Group Theory, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 10. Cambridge University Press, Cambridge (2000)

  2. Ballantyne, J., Greer, N., Rowley, P.: Local fusion graphs for symmetric groups. J. Group Theory (to appear)

  3. Bates C., Bundy D., Perkins S., Rowley P.: Commuting involution graphs for symmetric groups. J. Algebra 266, 133–153 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bates C., Bundy D., Perkins S., Rowley P.: Commuting involution graphs for finite Coxeter groups. J. Group Theory 6(4), 461–476 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bates C., Bundy D., Perkins S., Rowley P.: Commuting involution graphs in special linear groups. Commun. Algebra 32(11), 4179–4196 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bates C., Bundy D., Perkins S., Rowley P.: Commuting involution graphs for sporadic groups. J. Algebra 316, 849–868 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bates C., Bundy D., Perkins S., Rowley P.: A note on commuting graphs for symmetric groups. Elec. J. Combin. 16, R6 (2009)

    Google Scholar 

  8. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Devillers A., Giudici M.: Involution graphs where the product of two adjacent vertices has order three. J. Aust. Math. Soc. 85(3), 305–322 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sagan B.: The symmetric group. Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd edn. Graduate Texts in Mathematics, vol. 203. Springer, New York (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Ballantyne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballantyne, J., Greer, N. & Rowley, P. On Coprimality Graphs for Symmetric Groups. Graphs and Combinatorics 29, 1595–1622 (2013). https://doi.org/10.1007/s00373-012-1239-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-012-1239-y

Keywords

Navigation