Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the Number of Edges in Geometric Graphs Without Empty Triangles

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

In this paper we study the extremal type problem arising from the question: What is the maximum number ET(S) of edges that a geometric graph G on a planar point set S can have such that it does not contain empty triangles? We prove: \({{n \choose 2} - O(n \log n) \leq ET(n) \leq {n \choose 2} - \left(n - 2 + \left\lfloor \frac{n}{8} \right\rfloor \right)}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bárány I., Valtr P.: Planar point sets with a small number of empty convex polygons. Studia Scientiarum Mathematicarum Hungarica 41(2), 243–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Erdős P.: Some more problems on elementary geometry. Aust. Math. Soc. Gaz. 5, 52–54 (1978)

    Google Scholar 

  3. Gerken T.: Empty convex hexagons in planar point sets. Discret. Comput. Geom. 39(1-3), 239–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Harborth H.: Konvexe Fünfecke in ebenen Punktmengen. Elem. Math. 33, 116–118 (1978)

    MathSciNet  MATH  Google Scholar 

  5. Horton J.D.: Sets with no empty convex 7-gons. Can. Math. Bull. 26, 482–484 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Nara, C., Sakai, T., Urrutia, J.: Maximal number of edges in geometric graphs without convex polygons. In: Akiyama, J., Kano, M. (eds.) Discrete and Computational Geometry. Lecture Notes in Computer Science. vol. 2866, pp. 215–220. Springer, Berlin (2003)

  7. Nicolás C.M.: The empty hexagon theorem. Discret. Comput. Geom. 38, 389–397 (2007)

    Article  MATH  Google Scholar 

  8. Turán P.: On an extremal problem in graph theory. Mat. Fiz. Lapok 48, 436–452 (1941)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Urrutia.

Additional information

C. Bautista-Santiago, M. A. Heredia and A. Ramírez-Vigueras partially supported by SEP-CONACYT of Mexico. C. Huemer was partially supported by projects MEC MTM2009-07242, Gen. Cat. DGR 2009SGR1040, and the ESF EUROCORES programme EuroGIGA, CRP ComPoSe, MICINN Project EUI-EURC-2011-4306. C. Seara was partially supported by projects MTM2009-07242, Gen. Cat. DGR2009GR1040, and the ESF EUROCORES programme EuroGIGA-ComPoSe IP04-MICINN Project EUI-EURC-2011-4306. J. Urrutia was partially supported by projects MTM2006-03909 (Spain) and SEP-CONACYT of México, Proyecto 80268.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bautista-Santiago, C., Heredia, M.A., Huemer, C. et al. On the Number of Edges in Geometric Graphs Without Empty Triangles. Graphs and Combinatorics 29, 1623–1631 (2013). https://doi.org/10.1007/s00373-012-1220-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-012-1220-9

Keywords

Mathematics Subject Classification (2000)

Navigation