Abstract
In this paper we study the extremal type problem arising from the question: What is the maximum number ET(S) of edges that a geometric graph G on a planar point set S can have such that it does not contain empty triangles? We prove: \({{n \choose 2} - O(n \log n) \leq ET(n) \leq {n \choose 2} - \left(n - 2 + \left\lfloor \frac{n}{8} \right\rfloor \right)}\) .
Similar content being viewed by others
References
Bárány I., Valtr P.: Planar point sets with a small number of empty convex polygons. Studia Scientiarum Mathematicarum Hungarica 41(2), 243–266 (2004)
Erdős P.: Some more problems on elementary geometry. Aust. Math. Soc. Gaz. 5, 52–54 (1978)
Gerken T.: Empty convex hexagons in planar point sets. Discret. Comput. Geom. 39(1-3), 239–272 (2008)
Harborth H.: Konvexe Fünfecke in ebenen Punktmengen. Elem. Math. 33, 116–118 (1978)
Horton J.D.: Sets with no empty convex 7-gons. Can. Math. Bull. 26, 482–484 (1983)
Nara, C., Sakai, T., Urrutia, J.: Maximal number of edges in geometric graphs without convex polygons. In: Akiyama, J., Kano, M. (eds.) Discrete and Computational Geometry. Lecture Notes in Computer Science. vol. 2866, pp. 215–220. Springer, Berlin (2003)
Nicolás C.M.: The empty hexagon theorem. Discret. Comput. Geom. 38, 389–397 (2007)
Turán P.: On an extremal problem in graph theory. Mat. Fiz. Lapok 48, 436–452 (1941)
Author information
Authors and Affiliations
Corresponding author
Additional information
C. Bautista-Santiago, M. A. Heredia and A. Ramírez-Vigueras partially supported by SEP-CONACYT of Mexico. C. Huemer was partially supported by projects MEC MTM2009-07242, Gen. Cat. DGR 2009SGR1040, and the ESF EUROCORES programme EuroGIGA, CRP ComPoSe, MICINN Project EUI-EURC-2011-4306. C. Seara was partially supported by projects MTM2009-07242, Gen. Cat. DGR2009GR1040, and the ESF EUROCORES programme EuroGIGA-ComPoSe IP04-MICINN Project EUI-EURC-2011-4306. J. Urrutia was partially supported by projects MTM2006-03909 (Spain) and SEP-CONACYT of México, Proyecto 80268.
Rights and permissions
About this article
Cite this article
Bautista-Santiago, C., Heredia, M.A., Huemer, C. et al. On the Number of Edges in Geometric Graphs Without Empty Triangles. Graphs and Combinatorics 29, 1623–1631 (2013). https://doi.org/10.1007/s00373-012-1220-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-012-1220-9