Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Embedding 1-Factorizations of K n in PG(2, 32)

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

1-Factorizations of the complete graph K n embedded in a finite Desarguesian projective plane PG(2, q), q even, are hyperfocused arcs of size n. The classification of hyperfocused arcs is motivated by applications to 2-level secret sharing schemes. So far it has been done for q  ≤ 16, and for special types of hyperfocused arcs. In this paper the case q = 32 is investigated and the following two results are proven. (i) Uniqueness of hyperfocused 12-arcs, up to projectivities. (ii) Non-existence of hyperfocused 14-arcs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beato A., Faina G., Giulietti M.: Arcs in Desarguesian nets. Contrib. Discret. Math. 3(1), 96–108 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Beutelspacher A., Wettl F.: On 2-level secret sharing. Des. Codes Cryptogr. 3(2), 127–134 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bichara, A., Korchmáros, G.: Note on (q + 2)-sets in a Galois plane of order q. In: Combinatorial and Geometric Structures and their Applications. Ann. Discrete Math., Vol. 14, pp. 117–122. North-Holland, Amsterdam (1982)

  4. Cherowitzo W.E., Holder L.D.: Hyperfocused arcs. Simon Stevin 12(5), 685–696 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Dinitz J.H., Garnick D.K., McKay B.D.: There are 526,915,620 nonisomorphic onefactorizations of K12. J. Combin. Des. 2, 273–285 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Drake D.: Hyperovals in nets of small degree. J. Combin. Des. 10, 322–334 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Drake D., Keating K.: Ovals and hyperovals in Desarguesian nets. Des. Codes Cryptogr. 31(3), 195–212 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Faina, G., Parrettini, C., Pasticci, F.: Hyperfocused arcs in PG(2, 32). arXiv:0803.3933v3 [math.CO]

  9. Giulietti M.: On the number of chords of an affinely regular polygon passing through a given point. Acta Scientiarum Mathematicarum (Szeged) 74(3–4), 901–913 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Giulietti M.: Small complete caps in PG(N, q), q even. J. Combin. Des. 15(5), 420–436 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giulietti M., Davydov A.A., Marcugini S., Pambianco F.: New inductive constructions of complete caps in PG(N, q), q even. J. Combin. Des. 18, 177–201 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Giulietti M., Montanucci E.: On hyperfocused arcs in PG(2, q). Discr. Math. 306(24), 3307–3314 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giulietti M., Pasticci F.: Quasi-perfect linear codes with minimum distance 4. IEEE Trans. Inf. Theory 53(5), 1928–1935 (2007)

    Article  MathSciNet  Google Scholar 

  14. Hirschfeld J.W.P.: Projective Geometries over Finite Fields. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  15. Holder, L.D.: The construction of Geometric Threshold Schemes with Projective Geometry. Master’s Thesis, University of Colorado at Denver (1997)

  16. Kaski P., Ostergard P.R.J.: There are 1,132,835,421,602,062,347 nonisomorphic one-factorizations of K 14. J. Combin. Des. 17(2), 147–159 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Korchmáros G.: Poligoni affin-regolari dei piani di Galois d’ordine dispari. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 56(8), 690–697 (1974)

    MATH  Google Scholar 

  18. Korchmáros G.: Estensioni del concetto di “poligono affin regolare” ad un qualunque piano affine. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 60(8), 119–125 (1976)

    MATH  Google Scholar 

  19. Korchmáros, G., Lanzone, V., Sonnino, A.: Projective k-arcs and 2-level sharing schemes. Des. Codes Cryptogr. doi:10.1007/s10623-011-9562-5

  20. Korchmáros G., Szőnyi T.: Affinely regular polygons in an affine plane. Contrib. Discret. Math. 3, 20–38 (2008)

    MATH  Google Scholar 

  21. Simmons, G.: How to (really) share a secret. In: Adv. in Cryptology-CRYPTO ’88. LNCS, Vol. 403, pp. 390–448 (1989)

  22. Simmons G.: Sharply focused sets of lines on a conic in PG(2, q). Congr. Numer. 73, 181–204 (1990)

    MathSciNet  Google Scholar 

  23. Wettl F.: On the nuclei of a pointset of a finite projective plane. J. Geom. 30, 157–163 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Faina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faina, G., Parrettini, C. & Pasticci, F. Embedding 1-Factorizations of K n in PG(2, 32). Graphs and Combinatorics 29, 883–892 (2013). https://doi.org/10.1007/s00373-012-1166-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-012-1166-y

Keywords

Mathematics Subject Classification

Navigation