Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Intervals and Convex Sets in Strong Product of Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

In this note we consider intervals and convex sets of strong product. Vertices of an arbitrary interval of \({G\boxtimes H}\) are classified with shortest path properties of one factor and a walk properties of a slightly modified second factor. The convex sets of the strong product are characterized by convexity of projections to both factors and three other local properties, one of them being 2-convexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anand B.S., Changat M., Klavžar S., Peterin I.: Convex sets in lexicographic products of graphs. Graphs Combin. 28, 77–84 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cáceres J., Hernando M.C., Mora M., Pelayo I.M., Puertas M.L.: On the geodetic and the hull numbers in strong product graphs. Comput. Math. Appl. 60, 3020–3031 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calder J.: Some elementary properties of interval convexities. J. London Math. Soc. 3, 422–428 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Changat M., Mathew J.: On triangle path convexity in graphs. Discret. Math. 206, 91–95 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Changat M., Mulder H.M., Sierksma G.: Convexities related to path properties on graphs. Discret. Math. 290, 117–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ghidewon A.-A., Hammack R.: Centers of tensor product of graphs. Ars. Combin. 74, 201–211 (2005)

    MathSciNet  Google Scholar 

  7. Graovac A., Pisanski T.: On the Wiener index of a graph. J. Math. Chem. 8, 53–62 (1991)

    Article  MathSciNet  Google Scholar 

  8. Hammack R., Imrich W., Klavžar S.: Handbook of Product Graphs, 2nd Edn. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  9. Imrich W., Klavžar S., Rall D.F.: Topics in Graph Theory: Graphs and Their Cartesian Product. A K Peters, Wellesley (2008)

    MATH  Google Scholar 

  10. Kim S.-R.: Centers of a tensor composite graph. Congr. Numer. 81, 193–203 (1991)

    MathSciNet  Google Scholar 

  11. Körner J., Pilotto C., Simonyi G.: Local chromatic number and Sperner capacity. J. Combin. Theory Ser. B 95, 101–117 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Král D., Maxová J., Šámal R., Podbrdský P.: Hamiltonian cycles in strong products of graphs. J. Graph Theory 48, 299–321 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mulder, H.M.: The interval function of a graph. In: Mathematical Centre Tracts, vol. 132. Mathematisch Centrum, Amsterdam (1980)

  14. Morgana M.A., Mulder H.M.: The induced path convexity, betweenness and svelte graphs. Discret. Math. 254, 349–370 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Santhakumaran A.P., Ullas Chandran S.V.: The geodetic number of strong product graphs. Discuss. Math. Graph Theory 30, 687–700 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Santhakumaran A.P., Ullas Chandran S.V.: The hull number of strong product graphs. Discuss. Math. Graph Theory 31, 493–507 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Špacapan S.: Connectivity of strong product of graphs. Graphs Combin. 26, 457–467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. van de Vel, M.L.J.: Theory of Convex Structures. North Holland, Amsterdam (1993)

  19. Yeh Y.N., Gutman I.: On the sum of all distances in composite graphs. Discret. Math. 135, 359–365 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iztok Peterin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterin, I. Intervals and Convex Sets in Strong Product of Graphs. Graphs and Combinatorics 29, 705–714 (2013). https://doi.org/10.1007/s00373-012-1144-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-012-1144-4

Keywords

Mathematics Subject Classification (2010)

Navigation