Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The Maximum Chromatic Index of Multigraphs with Given Δ and μ

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let f(Δ, μ) = max {χ′(G) | Δ (G) = Δ, μ(G) = μ} where χ′(G), Δ(G) and μ(G) denote the the chromatic index, the maximum degree and the maximum multiplicity of the multigraph G, respectively. If Δ < 2μ, then Shannon’s bound implies that the gap between f(Δ, μ) and Vizing’s bound Δ + μ can be arbitrarily large. In this note, we prove that this is also the case for Δ ≥ 2μ (see Theorem 4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choudum S.A., Kayathri K.: An extension of Vizing’s adjacency lemma on edge chromatic critical graphs. Discrete Math. 206, 97–103 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Edmonds J.: Maximum matching and a polyhedron with 0-1 vertices. J. Res. Nat. Bur. Standards Sect. B 69, 125–130 (1965)

    MathSciNet  MATH  Google Scholar 

  3. Favrholdt, L.M., Stiebitz, M., Toft, B.: Graph Edge Colouring: Vizing’s Theorem and Goldberg’s Conjecture. DMF-2006-10-003, IMADA-PP-2006-20, University of Southern Denmark, Odense (2006)

  4. Goldberg M.K.: On multigraphs of almost maximal chromatic class (in Russian). Diskret. Analiz. 23, 3–7 (1973)

    Google Scholar 

  5. Gupta, R.P.: Studies in the theory of graphs. Ph.D. thesis, Tata Institute of Fundamental Research, Bombay (1967)

  6. Haxell, P., McDonald, J.: On characterizing Vizing’s edge colouring bound. Manuscript (2010)

  7. Holyer I.: The NP-completeness of edge-colouring. SIAM J. Comput. 10, 718–720 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ore O.: The Four-Colour Problem. Academic Press, New York (1967)

    Google Scholar 

  9. Scheide, D.: Kantenfärbungen von Multigraphen. Diplomarbeit, TU Ilmenau (2007)

  10. Scheide D., Stiebitz M.: On Vizing’s bound for the chromatic index of a multigraph. Discrete Math. 309, 4920–4925 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Seymour P.: On multicolorings of cubic graphs, and conjectures of Fulkerson and Tutte. Proc. Lond. Math. Soc. 38, 423–460 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shannon C.E.: A theorem on coloring the lines of a network. J. Math. Phys. 28, 148–151 (1949)

    MathSciNet  MATH  Google Scholar 

  13. Vizing V.: On an estimate of the chromatic class of a p-graph (in Russian). Diskret. Analiz. 3, 25–30 (1964)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stiebitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheide, D., Stiebitz, M. The Maximum Chromatic Index of Multigraphs with Given Δ and μ . Graphs and Combinatorics 28, 717–722 (2012). https://doi.org/10.1007/s00373-011-1068-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-011-1068-4

Keywords

Navigation